
Contents

1 Graph theory basics 3
1.1 Graphs, adjacency and incidence 3

1.1.1 Example Gex1 . 3
1.1.2 Example Gex2 . 5
1.1.3 Adjacency and incidence 6
1.1.4 Example Gex3 . 7
1.1.5 Example WG . 10
1.1.6 Example S(n, k) . 10
1.1.7 Example On . 11
1.1.8 Example RPG(8, 15) 12
1.1.9 Notation . 13

1.2 Simple finite graphs . 14
1.3 Degree . 16

1.3.1 Petersen graph . 18
1.3.2 A 3-regular example 19
1.3.3 A 4-regular example 19

1.4 Handshake lemma . 20
1.5 Graph representation . 21

1.5.1 Adjacency list . 21
1.5.2 Adjacency matrix . 25
1.5.3 Incidence matrix . 27
1.5.4 Relations between representations 28

1.6 Graph isomorphism . 29
1.7 Walks, paths and cycles . 33
1.8 Special graphs . 37

1.8.1 Empty graph En . 37
1.8.2 Complete graph Kn 38
1.8.3 Bipartite graphs . 38
1.8.4 Path Pn . 40

1

1.8.5 Cycle Cn . 41
1.9 Common graph measures . 41
1.10 Subgraphs . 45
1.11 Connected graphs . 52

1.11.1 Bridges and cut vertices 56
1.12 Trees . 58
1.13 Spanning trees . 63
1.14 BFS . 66

1.14.1 Example: connected graph 67
1.14.2 Example: disconnected graph 76
1.14.3 Properties of BFS trees 81

2

Chapter 1

Graph theory basics

1.1 Graphs, adjacency and incidence

The term graph will refer to a mathematical object that has wide applica-
tion in many areas. There are various equivalent definitions of graphs. We
present two of them.

Definition 1. [graph] The following are equivalent definitions of graphs

1. A graph G is a non-empty set, V (G), of objects, called vertices, together
with a set, E(G), of unordered pairs of (distinct) vertices. The elements of
E(G) are called edges;

2. A graph G is a triple consisting of non-empty set V (G), of objects, called
vertices, a set, E(G), of objects called edge and a relation I (incidence
relation) that associates each edge with a pair of vertices;

Since this is an introductory material as stated in the definition the set of
vertices V (G) will be a non-empty set. Vertices are sometimes called nodes
or points.

The set of edges E(G), sometimes called lines, may be empty but will
at all times satisfy E(G) ∩ V (G) = ∅. That is the set of vertices and set of
edges are disjoint. In some text you may see a definition for edges given as
E(G) ⊆ V (G) × V (G), which says that the set of edges is a relation on the
set of vertices. Should you prefer that formalization, for the graphs studied
here the edges imply a symmetric and non-reflexive relation.

1.1.1 Example Gex1

Define the graph Gex1 via

3

vertex set V (Gex1) = {1, 2, 3, 4}

edge set E(Gex1) = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}.

For most graphs there is a corresponding figure that associates a point with
every vertex and there is a line between two vertices if there is an edge that
is associated (Definition 1 part 2) with those two vertices. For the graph
defined here a corresponding drawing is

(1,2) (1,4)

(2,3)

(2,4)

(3,4)

1

2

3

4

These drawings are known as embeddings. Embeddings can be formalized
similar to the graph of a function such as y = x2 – intuitively embedding
is a pair of function from the vertex set to R2 and from the edge set to
R2 whose result is the above “drawing”. Unlike the drawings (graphs or
embeddings) of functions, embeddings of graphs (graph as in Definition 1)
are not unique. In fact there may be infinitely many embeddings of a graph.
For example Gex1 has alternative embedding

4

(1,2) (1,4)

(2,3)

(2,4)

(3,4)

1

2

3

4

It is therefore crucial to distinguish a graph from its embedding: graphs are
incidence structures. Embeddings are simply a tool to visualize the ideas.

1.1.2 Example Gex2

Define the graph Gex2 via

vertex set V (Gex2) = {v1, v2, v3, v4, v5, v6, v7, v8}

edge set E(Gex2) = {a, b, c, d, f, g, h, i, j}.

One embedding of Gex2 is

5

a

b

f

j

c

d

g

h

i

v1

v2

v3

v4

v5
v6

v7
v8

1.1.3 Adjacency and incidence

The following terminology relates vertices and edges:

Adjacency:

• if edge e = (u, v) then we say vertices u and v are adjacent;

• vertices adjacent to a vertex u are neighbours of u; the set of neighbours
of u is denoted by N(u);

Example: consider the graph Gex1 from §1.1.1:

• vertices 1 and 2 are adjacent, which also means that vertices 2 and 1
are adjacent;

• vertices 1 and 4 are adjacent;

• vertices 2 and 3 are adjacent;

• vertices 2 and 4 are adjacent;

• vertices 3 and 4 are adjacent;

Further

• The neighbours of vertex 1 consists of vertices 2 and 4, that is

N(1) = {2, 4}

6

• for vertex 2 we have N(2) = {1, 3, 4}

• for vertex 3 we have N(3) = {2, 4}

• for vertex 4 we have N(4) = {1, 2, 3}

If there is no edge joining two vertices u and v we say that those vertices
are not adjacent. For example, in Gex1 vertex 1 is not adjacent to vertex 3.

Incidence:

• if edge e = (u, v) then we say edge e is incident with u and v;

• if edge e = (u, v) then we say edge e is joins (also connects) u and v;

Example: consider the graph Gex2 from §1.1.2:

• Edge i is incident with vertex v7, similarly edge i is incident with
vertex v8;

• Edge d is incident with vertices v3 and v4;

• Edge c joins vertices v2 and v3;

• Edge h joins vertices v6 and v7;

1.1.4 Example Gex3

To simplify notation we will often (but not always) define the vertex set of
a graph as the integers 1, . . . , n as done forGex1 in §1.1.1 or 0, . . . , n−1. The
edge set will be denoted as size two subsets of the vertex set. For example
Gex3 defined as

vertex set V (Gex3) = {0, 1, 2, 3, 4, 5, 6, 7}

edge set E(Gex3) = {{0, 1}, {0, 2}, {0, 3}, {0, 5}, {1, 2}, {1, 5}, {1, 6}, {4, 5}, {4, 6}, {4, 7}}.

One embedding of Gex3 is

7

0,1

0,2

0,3

0,5

1,2

1,5

1,6

4,5

4,6

4,7

0 1

2

3

4
5

6

7

From the embedding it is trivial to associate edge {2, 6} with its “line”,
therefore in embeddings we will omit the edge label. The corresponding
embedding of Gex3 is

0 1

2

3

4
5

6

7

8

While it may require a marginally larger effort a graph embedding may
omit vertex labels and keep edge labels only. As before if necessary vertex
labels can be deduced. The corresponding Gex3 embedding is

0,1

0,2

0,3

0,5

1,2

1,5

1,6

4,5

4,6

4,7

Lastly, all label may be omitted such as

we will get back to this issue once isomorphic graphs are discussed.

9

1.1.5 Example WG

Graphs are used to model (real world problems: for example page ranking
of WWW pages) and often the description of the vertex set, the edge set or
both is better conveyed by an approach different from exhaustive list. For
example define a graph WG with vertex set

vertex set V (WG) = { can, car, cat, ear, eat, far, fat, nun, rat, run, sun }

edge set two vertices are adjacent if and only if their strings differ in ex-
actly one letter position-wise.

In the graph WG the vertices “can” and “car” are adjacent, but there is no
edge incident with both vertex “fat” and vertex “nun”. An embedding of
WG is

rat

sun

can

eat

ear

cat

car
far

nun

fat
run

The edge labels are omitted in the above embedding since they do not add
any extra information in this case. In other scenarios only edge labels may
be included and vertices left unlabeled.

1.1.6 Example S(n, k)

Here is an example where both the vertex set and the edge set are not given
as lists

vertex set All k subsets of {1, . . . , n}

10

edge set two vertices are adjacent if and only if their intersection contains
exactly k − 1 elements.

Here is an embedding of S(4, 1)

1

2

3

4

and an embedding of S(5, 2)

1, 2

1, 3

1, 4

1, 5
2, 3

2, 4

2, 5

3, 4

3, 5
4, 5

1.1.7 Example On

The odd graph On is the graph for which

11

vertex set The vertex set is the set of n subsets of {1, . . . , 2n+ 1}

edge set two vertices are adjacent if and only if the are disjoint

An embedding of O1

12

3

and O2

1, 2

1, 3

1, 4

1, 5
2, 3

2, 4

2, 5

3, 4

3, 5
4, 5

1.1.8 Example RPG(8, 15)

Very often we will describe a graph via its one of its embeddings. Consider
the graph RPG(8, 15) with embedding

12

10

11 12

13

14

8

9

This is the graph with vertex set that contains all integers v such that

8 ≤ v < 15

and two vertices are adjacent if and only if corresponding integers are rela-
tively prime (i.e, their greatest common divisor is one).

1.1.9 Notation

The set theoretic symbol ∈ and 6∈ used to identify if an element belongs or
not to a set is also used with graphs. For vertex u the notation u ∈ G means
that u is in the set of vertices of the graph G, likewise u 6∈ G means vertex
u is not in the vertex set of graph G. Similarly for an edge e the notation
e ∈ G says the edge e is in the edge set of G and the notation e 6∈ G implies
that the edge e is not in the edge set ofG. To expand uv ∈ G implies that for
vertices u and v we have u ∈ G, v ∈ G and the vertices u and v are adjacent
i.e., there is an edge that joins u and v.

Example: for RPG(8, 15) from §1.1.8 the following are true for vertices

• 3 6∈ RPG(8, 15)

• 9 ∈ RPG(8, 15)

• 15 6∈ RPG(8, 15)

• 29 6∈ RPG(8, 15)

13

the following are true for edges

• {10, 13} ∈ RPG(8, 15)

• {10, 8} 6∈ RPG(8, 15)

• {8, 15} 6∈ RPG(8, 15)

• {3, 29} 6∈ RPG(8, 15)

1.2 Simple finite graphs

If there are more than one edge incident with the same pair of edges then
the graph has multiple edges; if an edge joins vertex with itself the edge is
called a loop. The following terminology is widely adopted:

multigraph a graph with multiple edges and no loops, for example

0 1

2

pseudograph a graph with multiple edges and loops, for example

14

0 1

2

We exclude loops and multiple edges from our discussion.

Definition 2 (simple graphs). A graph is called simple if it has no loops and no
multiple edges.

The graph described in §1.1.8 can be generalized toRPG(8,∞) to mean
the graph has vertex set all integers greater than or equal to eight. Such
graph will have infinitely many vertices and infinitely many edges. We
also exclude such graphs from our discussion.

Definition 3 (finite graphs). A graph is called finite if both the vertex set and
the edge set are finite; otherwise the graph is called infinite.

A simple graph can be both finite and infinite. Likewise an finite graph
can be simple or alternatively contain loops or multiple edges. Those two
ideas are independent from each other. From now on unless explicitly
stated a graph will mean a simple finite graph. With every simple finite
graph we associate order and size.

Definition 4 (order). The order of a graph G is the number of vertices in G.

Definition 5 (size). The size of a graph G is the number of edges in G.

Examples: for the graphs defined in §1.1

15

section graph order size
§ 1.1.1 Gex1 4 3
§ 1.1.2 Gex2 8 9
§ 1.1.4 Gex3 8 10
§ 1.1.5 WG 11 17
§ 1.1.6 S(4, 1) 4 4
§ 1.1.6 S(5, 2) 10 30
§ 1.1.7 O1 3 3
§ 1.1.7 O2 10 15
§ 1.1.8 RPG(8, 15) 7 14

The order of a graph is an integer that is greater than or equal to one (vertex
set cannot be empty). The size is an non-negative integer.

1.3 Degree

For a vertex u the size of its the neigbourhood N(u) plays central role.

Definition 6 (degree). The number of edges incident with a vertex u is called the
degree of u and denoted by deg(u).

In other words
deg(u) = |N(u)| .

Examples:

• for WG we have

deg(can) = 2

deg(car) = 4

deg(cat) = 5

deg(ear) = 3

deg(eat) = 4

deg(far) = 3

deg(fat) = 4

deg(nun) = 2

deg(rat) = 3

deg(run) = 2

deg(sun) = 2

16

• for RPG(8, 15) we have

deg(8) = 3

deg(9) = 5

deg(10) = 3

deg(11) = 6

deg(12) = 2

deg(13) = 6

deg(14) = 3

• for S(5, 2) the degree of every vertex is six.

The list of all degrees has its uses as far as graphs are concerned

Definition 7 (degree sequence). The degree sequence of a graph is the list of
vertex degrees listed in a decreasing order as d1 ≥ d2 ≥ · · · ≥ dn

Examples

• The degree sequence of WG is

5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2

• The degree sequence of RPG(8, 15) is

6, 6, 5, 3, 3, 3, 2

• The degree sequence of S(5, 2) is

6, 6, 6, 6, 6, 6, 6, 6, 6, 6

Of particular interest are the first and the last entry of the degree se-
quence which correspond to the maximum and the minimum of all degrees

Definition 8 (minimum degree). The minimum degree of a graph G denoted by
δ(G) is the minimum of the vertex degrees,

δ(G) = min
u∈V (G)

deg(u)

Likewise

Definition 9 (maximum degree). The maximum degree of a graph G denoted
by ∆(G) is the maximum of the vertex degrees,

∆(G) = max
u∈V (G)

deg(u)

17

Examples

• for WG we have δ(WG) = 2 and ∆(WG) = 5

• for RPG(8, 15) we have δ(RPG(8, 15)) = 2 and ∆(RPG(8, 15)) = 6

• for S(5, 2) we have δ(S(5, 2)) = ∆(S(5, 2)) = 6

For any graph G
δ(G) ≤ ∆(G).

Graphs such as S(5, 2) for which the minimum and the maximum degrees
are equal to each other are a special class of graphs

Definition 10. A graph G for which

δ(G) = ∆(G) = r

is called r-regular graph.

Example:

• the graph S(4, 1) is 3-regular,

• the graph S(5, 2) is 6-regular,

• the graph O1 is 2-regular

• the graph O2 is 3-regular

No other graphs in §1.1 regular, however those graphs are highly symmet-
ric (which can formalized in mathematical term). We present a few more
regular graph examples. The first one is the so called Petersen graph

1.3.1 Petersen graph

The Petersen graph is

18

0

1

2 3

4

5

6

7 8

9

It is also a highly symmetric graph.

1.3.2 A 3-regular example

The following graph is a three regular graph that is not as symmetric as
those in §1.1

0

1
2

3

4

5

6

7

89

10

11

12

13

14

15

1.3.3 A 4-regular example

The following graph is a four regular graph that is not as symmetric as
those in §1.1

19

0

12

3

4 5

6 7

8

910

1.4 Handshake lemma

We next proceed with a very well known and powerful result concerning
graphs.

Theorem 1 (Handshake lemma). For a graph G having e edges∑
u∈V (G)

d(u) = 2e

Proof. Consider the collection of unordered pairs {u, v} where each pair
corresponds to an edge in the graph. There are in total 2e vertices counted
with multiplicities in the list. Another way to count the same value is look
at how many times a vertex appears in a pair {u, v}, than answer is the
degree of the vertex. Hence the result follows.

Examples

• For WG which has 18 edges Handshake lemma says

5 + 4 + 4 + 4 + 3 + 3 + 3 + 2 + 2 + 2 + 2 = 2× 17

• For RPG(8, 15) which has 14 edges Handshake lemma says

6 + 6 + 5 + 3 + 3 + 3 + 2 = 2× 14

20

• For S(5, 2) which has 30 edges Handshake lemma says

6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 = 2× 30

Handshake lemma answers may question related to graphs such as

Question: Can we have a graph with 3 vertices of degree one and all other
vertices of degree two?

Theorem 2. The number of vertices of odd degree in a graph is even

Proof. If a graph has odd number of odd degree vertices then
∑

u∈V (G) deg(u)
is odd. Handshake lemma says the sum must be even, thus the number of
odd degree vertices in a graph is necessarily even.

The graph WG has two vertices of odd degree. The graph RPG(8, 15)
has four vertices of odd degree. The graph S(5, 2) has zero vertices of odd
degree.

1.5 Graph representation

Given the practical importance of graphs it is important to represent a
graph in manner that is useful for computations. We will discuss three
such representations:

1.5.1 Adjacency list

One way to store a graph is to keep for each vertex u a list of vertices that
are adjacent to u (the neighbourhood of u).

21

Example: the graph WG has adjacency list

can → [car, cat],

car → [can, cat, ear, far],

cat → [can, car, eat, fat, rat],

ear → [car, eat, far],

eat → [cat, ear, fat, rat],

far → [car, ear, fat],

fat → [cat, eat, far, rat],

nun → [run, sun],

rat → [cat, eat, far],

run → [nun, sun],

sun → [nun, run]

Example: the graph RPG(8, 15) has adjacency list

8 → [9, 11, 13] ,

9 → [8, 10, 11, 13, 14] ,

10 → [9, 11, 13] ,

11 → [8, 9, 10, 12, 13, 14] ,

12 → [11, 13] ,

13 → [8, 9, 10, 11, 12, 14] ,

14 → [9, 11, 13]

22

Example: the graph S(5, 2) has adjacency list

{4, 5} → [{3, 5} , {3, 4} , {2, 5} , {2, 4} , {1, 5} , {1, 4}] ,
{3, 5} → [{4, 5} , {3, 4} , {2, 5} , {2, 3} , {1, 5} , {1, 3}] ,
{3, 4} → [{4, 5} , {3, 5} , {2, 4} , {2, 3} , {1, 4} , {1, 3}] ,
{2, 5} → [{4, 5} , {3, 5} , {2, 4} , {2, 3} , {1, 5} , {1, 2}] ,
{2, 4} → [{4, 5} , {3, 4} , {2, 5} , {2, 3} , {1, 4} , {1, 2}] ,
{2, 3} → [{3, 5} , {3, 4} , {2, 5} , {2, 4} , {1, 3} , {1, 2}] ,
{1, 5} → [{4, 5} , {3, 5} , {2, 5} , {1, 4} , {1, 3} , {1, 2}] ,
{1, 4} → [{4, 5} , {3, 4} , {2, 4} , {1, 5} , {1, 3} , {1, 2}] ,
{1, 3} → [{3, 5} , {3, 4} , {2, 3} , {1, 5} , {1, 4} , {1, 2}] ,
{1, 2} → [{2, 5} , {2, 4} , {2, 3} , {1, 5} , {1, 4} , {1, 3}]

The more edges a graph has the more memory requirement there will
be to store that graph. For so called dense graphs, that is graphs with a lot
of edges, rather than storing the list of neighbors, it is more efficient if one
stores the list of vertices that are not adjacent to a given vertex. Such idea
motivates

Definition 11 (Complement of a graph). Let G = (V,E) be a graph with
vertex set V and edge set E. The complement of G is the graph G = (V,E′)
where

{u, v} ∈ E′ ⇔ {u, v} 6∈ E

that is u and v are adjacent in G if and only if u and v are not adjacent in G.

In other words rather than storing the adjacency list of store the adja-
cency list of the complement of the graph.

Example: the complement of S(4, 1) denoted by S(4, 1) is

23

1

2

3

4

and the complement of S(5, 2) denoted by S(5, 2) is

1, 2

1, 3

1, 4

1, 5
2, 3

2, 4

2, 5

3, 4

3, 5
4, 5

24

The adjacency list of S(5, 2) is

{4, 5} → [{2, 3} , {1, 3} , {1, 2}] ,
{3, 5} → [{2, 4} , {1, 4} , {1, 2}] ,
{3, 4} → [{2, 5} , {1, 5} , {1, 2}] ,
{2, 5} → [{3, 4} , {1, 4} , {1, 3}] ,
{2, 4} → [{3, 5} , {1, 5} , {1, 3}] ,
{2, 3} → [{4, 5} , {1, 5} , {1, 4}] ,
{1, 5} → [{3, 4} , {2, 4} , {2, 3}] ,
{1, 4} → [{3, 5} , {2, 5} , {2, 3}] ,
{1, 3} → [{4, 5} , {2, 5} , {2, 4}] ,
{1, 2} → [{4, 5} , {3, 5} , {3, 4}]

and since S(5, 2) has fewer edges than S(5, 2) it is has smaller memory
requirements.

1.5.2 Adjacency matrix

The second representation is based on the adjacency relation

Definition 12 (adjacency matrix). Let G be a graph with vertex set V (G) =
{v1, . . . , vn}. The adjacency matrix of G is a n × n matrix A = {aij} where
aij = 1 if vi and vj are adjacent and zero otherwise.

Example: the adjacency matrix Gex1 from §1.1.1 is

AGex1
=


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


In the matrix row i corresponds to vertex i and column j corresponds to
vertex j. The entry AGex1

[1, 3] = 0 implies there is no edge between vertex
one and vertex three. If there is no edge incident with vertex one and vertex
three then also entry AGex1

[3, 1] = 0. Entry AGex1
[2, 3] = AGex1

[3, 2] = 1
implies there is an edge between vertex two and vertex three. In general for
an adjacency matrix A we have A[i, j] = A[j, i] which means A = At, that
is the adjacency matrix of a graph is symmetric. For graphs we consider,
there are no loops so diagonal entries are all zeroes.

25

Example: the adjacency matrix RPG(8, 15) is

0 1 0 1 0 1 0
1 0 1 1 0 1 1
0 1 0 1 0 1 0
1 1 1 0 1 1 1
0 0 0 1 0 1 0
1 1 1 1 1 0 1
0 1 0 1 0 1 0


where row i corresponds to vertex i+7 and column j corresponds to vertex
j + 7.

Example: the adjacency matrix S(4, 1) is
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


and the adjacency matrix of its complement is

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Naturally, there is a relation between the adjacency matrix of a graph and
the adjacency matrix of its complement: for off diagonal entries zeroes and
ones are flipped.

Example: the adjacency matrix S(5, 2) is

0 1 1 1 1 0 1 1 0 0
1 0 1 1 0 1 1 0 1 0
1 1 0 0 1 1 0 1 1 0
1 1 0 0 1 1 1 0 0 1
1 0 1 1 0 1 0 1 0 1
0 1 1 1 1 0 0 0 1 1
1 1 0 1 0 0 0 1 1 1
1 0 1 0 1 0 1 0 1 1
0 1 1 0 0 1 1 1 0 1
0 0 0 1 1 1 1 1 1 0


26

and the adjacency matrix of S(5, 2) is

0 0 0 0 0 1 0 0 1 1
0 0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 0 0 1
0 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 1 0 0
0 0 1 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0


Remark: Matrices do not carry information about the labels on the graphs.
Depending on the association of rows with vertices a graph may have more
than one adjacency matrix, for example if row one is associated with vertex
five and vertex five with row one the result will be a different adjacency
matrix.

1.5.3 Incidence matrix

The last graph representation is based on the incidence relation of a graph:

Definition 13 (incidence matrix). Let G be a graph with vertex set V (G) =
{v1, . . . , vn} and edge set E(G) = {e1, . . . , ek}. The incidence matrix of G is a
n× k matrix B = {bij} where bij = 1 if vi is incident with ej and zero otherwise.

Example: Gex1 has incidence matrix
1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1


where as its complement has incidence matrix

1
0
1
0



27

which once again shows that dense graphs are better stored via their com-
plement. Observe however that unlike adjacency matrix the to obtain in-
cidence matrix of a graph from the incidence matrix of its complement re-
quires some work.

Example: Gex2 has incidence matrix
1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1


Example: S(4, 1) has incidence matrix

0 0 1 0 1 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 1 0 0 0


Example: RPG(8, 15) has incidence matrix

0 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 0 0 1 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0


Remark: another way to see the Handshake lemma is to count the num-
ber of entries that equals one in the incidence matrix of a graph.

1.5.4 Relations between representations

The order of a graph is the order of its adjacency matrix. The size of a graph
is the number of columns of its incidence matrix. For example the incidence
matrix of S(5, 2) has a total of 30 columns. One can easily switch from
one representation to the other. The next result shows a further relation
between the notions that were presented so far.

28

Theorem 3. For a graph G with adjacency matrix A and incidence matrix B we
have

BBT = A+


d(v1) 0 . . . 0

0 d(v2) . . . 0
...
0 0 . . . d(vn)


Proof. Self study problem.

1.6 Graph isomorphism

Labels. So far we considered special examples and for easiness we mostly
labeled the vertices. However, whether we call a vertex v0 or 1 is not im-
portant. The incidence structure of the graph is important. On the WWW
“http://www.iyte.edu.tr” is human friendly reference but the underlying
algorithms call it “193.140.249.2”. In that respect two graphs are the same if
and only if they have the same incidence structure, the labels on the vertices
and edges is not important. This is captured in the following definition.

Definition 14 (isomorphic graphs). Two graphs G1 and G2 are isomorphic if
and only if there exists a bijection f : V (G1)→ V (G2) such that

(u, v) ∈ E(G1) ⇐⇒ (f(u), f(v)) ∈ E(G2).

In that case we call f an isomorphism from G1 to G2.

Example: the graph WG from §1.1.5 and the graph WG2

0
1

2

3

4

5 6

7

8

9

10

29

are isomorphic via the isomorphism f : V (WG1)→ V (WG)

u 0 1 2 3 4 5 6 7 8 9 10
f(u) can sun ear far car nun cat eat rat fat run

Since isomorphisms are invertible with inverses that are also isomorphisms,
graph isomorphisms is an equivalence relation (transitive, symmetric and
reflexive relation).

Moreover, the isomorphism is not necessarily unique. Here is an other
isomorphism from WG1 to WG:

u 0 1 2 3 4 5 6 7 8 9 10
g(u) can nun ear far car sun cat eat rat fat nun

Example: The graph S(5, 2) and the graph O2 have the same set of ver-
tices and are isomorphic via the identity map

id ({p, q}) = {p, q}.

Furthermore O2 and the Petersen graph are isomorphic via the map

u 0 1 2 3 4
f(u) {1, 2} {4, 5} {2, 3} {1, 4} {3, 5}

u 5 6 7 8 9
f(u) {3, 4} {1, 3} {1, 5} {2, 5} {2, 4}

Example: A bijection has to one-to-one which means that for two graphs
to be isomorphic they must have the same number of vertices. Therefore
Gex1 and Gex2 cannot be isomorphic.

Example: Gex2 and Gex3 have the same order, but they cannot be isomor-
phic since they have a different number of edges. Alternatively, Gex2 has
no vertices of degree three, whereas 5 ∈ Gex3 has degree three. Since ad-
jacency is preserved under graph isomorphism, this is another reason why
the two graphs are not isomorphic.

Remark: (sub)graph isomorphism problem is a highly non-trivial prob-
lem! Some of the most exciting developments related algorithms in recent
times are precisely related to the hardness of this problem. On the one hand
if you need to show that two graphs are not isomorphic it suffices to find

30

one property in one of the graphs that is not present in the second graph.
For example one of the graphs has a vertex of degree three the other has
no vertices of degree three. On the other hand if you need to show that
two graphs are isomorphic you must give an isomorphism between these
graphs as done above. Do not fall into the trap of listing a few (however
many) graph results and claim that those are enough to show that graphs
are isomorphic.

Once again a claim like:

any graph with a degree sequence

4, 2, 2, 2, 2, 2, 2, 2

must be isomorphic to Gex2

is false. While the above statement implicitly give the graph order (eight)
and size (nine) it does not guarantee isomorphism. For this particular ex-
ample the graph

0

1

2

3

4
5

6
7

have the same size, order and degree sequence, nevertheless these two
graphs are not isomorphic – in the graph above the vertex of degree four
has two neighbours that are adjacent where as all neighbours of vertex
v1 ∈ Gex2 which has degree four are pairwise not adjacent.

The graph S(5, 2) has size 30 and its complement has size 15. Therefore
S(5, 2) cannot be isomorphic to S(5, 2). Graphs for which G ≡ G have
special name.

Definition 15. A graphs is self-complementary if it is isomorphic to its com-
plement.

31

Example: the graph P4

0

1

2

3

is isomorphic to its complement

0

1

2

3

via the isomorphism

0 1 2 3
2 0 3 1

Thus P4 is a self complementary graph.

32

Remark: whenever a graph is described via an embedding with no labels
as done in §1.1.4, it will refer to any graph from the isomorphism class that
has the illustrated adjacency structure.

1.7 Walks, paths and cycles

We start with a general definition that is later specialized

Definition 16 (walk). A walk from vertex a to vertex b in a graph G is an alter-
nating sequence v0e1v1e2v2 . . . envn of vertices v0, v1, . . . , vn and edges e1, e2, . . . , en
in G such that a = v0, b = vn and for all 1 ≤ i ≤ n edge ei = (vi−1vi);

Recall Gex2 from §1.1.2 the following sequence W is a walk:

W = v7, i, v8, j, v1, a, v2, c, v3, d, v4, b, v1, a, v2, a, v1, f, v5

Similar to embeddings a walk can be given just as list of vertices, for the
walk W above

W = v7, v8, v1, v2, v3, v4, v1, v2, v1, v5

or as a list of edges, for the walk W above

W = i, j, a, c, d, b, a, a, f

the relation is unambiguous so depending on the focus all of the above are
equivalent and either can be recovered by the others

W = v7, i, v8, j, v1, a, v2, c, v3, d, v4, b, v1, a, v2, a, v1, f, v5

= v7, v8, v1, v2, v3, v4, v1, v2, v1, v5

= i, j, a, c, d, b, a, a, f

If a walk starts with vertex a and ends with vertex b it is called an ab walk.
The walk W above is a (v7, v5) walk. We will typically denote an ab walk
as Wab. For graphs that we discussed so far, edges have no “direction” so
if we reverse the sequence of a walk we still have a walk. In that case if the
original walk is abwalk the reverse sequence is a bawalk. The reverse walk
is denoted by W−1 for the example above we have

W−1 = v5, f, v1, a, v2, a, v1, b, v4, d, v3, c, v2, a, v1, j, v8, i, v7

= v5, v1, v2, v1, v4, v3, v2, v1, v8, v7

= f, a, a, b, d, c, a, j, i

Further W can be denoted as Wv7,v5 and W−1v7,v5 = Wv5,v7.

33

Definition 17 (length of a walk). The length of a walk W = v0e1 . . . envn is
the number of edges in the walk.

The length of W given above is nine, since it contains nine edges.

Definition 18 (trail). A trail is a walk with no repeated edges.

The walk W above contains edge a three times and is therefore not a
trail. We can obtain a trail from a walk as follows:

1 : v7, i, v8, j, v1, a, v2, c, v3, d, v4, b, v1,

remove︷ ︸︸ ︷
a, v2, a, v1, f, v5

2 : v7, i, v8, j, v1, a, v2, c, v3, d, v4, b, v1, f︸ ︷︷ ︸
glue

, v5

3 : v7, i, v8, j, v1, a, v2, c, v3, d, v4, b, v1, f, v5

The result in the last step

W2 = v7, i, v8, j, v1, a, v2, c, v3, d, v4, b, v1, f, v5

= v7, v8, v1, v2, v3, v4, v1, v5

= i, j, a, c, d, b, f

has no repeated edges and thus W2 is a trail; its length is seven.

Remark: if a walk has a repeated edge then it necessarily has a repeated
vertex. But a walk may have repeated vertices and have no repeated edges.

Definition 19 (path). A path is a walk with no repeated vertices.

Remark: a path cannot have repeated edges since if an edge appears at
least twice on a walk at least one vertex appears twice on the walk.

One can obtain a path from any walk/trail using the above procedure:

1 : v7, i, v8, j, v1,

remove︷ ︸︸ ︷
a, v2, c, v3, d, v4, b, v1, f, v5

2 : v7, i, v8, j, v1, f︸ ︷︷ ︸
glue

, v5

3 : v7, i, v8, j, v1, f, v5

34

The result is v7, v5-path

Pv7,v5 = v7, i, v8, j, v1, f, v5

= i, j, f

= v7, v8, v1, v5

The length of the path is three.
In the above example there is only one repeated vertex but the proce-

dure should be executed for all repeated vertices to obtain a path, which
shows the following.

Theorem 4. In a graph G if there is an ab-walk, then there is an ab-path.

Proof. Formally induction on the length of the walk. If the walk has length
one then it is a path. Suppose every ab walk of length at most n contains
an ab path. Let W be any ab walk of length m = n + 1. If W is a path
nothing to show. If W is not a path it has a repeated vertex say u. Let
W = v0e1v1 . . . vm−1emvm that is v0 = a, vm = b and m ≥ n + 1 suppose
u = vi and u = vj with i < j. Then from

W = v0e1v1 . . . vi−1eivi . . . vj−1ejvjej+1vj+1 . . . vm−1emvm

obtain
W̃ = v0e1v1 . . . vi−1eiviej+1vj+1 . . . vm−1emvm

which is a well defined walk since ej+1 is incident with vj = vi. The length
of W̃ is less than or equal to the length of W so its length is at most n. By
induction W̃ contains a ab-path. And since W̃ is contained in W then W
contains a ab-path, which concludes the argument.

Remark: in the above argument we used the term contain. It means, as
done in the above examples, one walk is obtain from another by a sequence
of remove and glue steps.

Theorem 5. If there is a path from a to b and from b to c in G then there is a path
from a to c in G.

Proof. Suppose there is a ab-path

Pab = av1, . . . , vn−1b

and a bc-path
Pbc = bu1, . . . , um−1c.

35

Then
Wac = av1, . . . , vn−1bu1, . . . , um−1c

is a ac-walk and by Theorem 4 the result follows.

Definition 20 (closed walk). A walk v0e1 . . . envn is closed if v0 = vn.

Recall Gex3 from §1.1.4 the following sequence W is a closed walk:

W = 1, 2, 0, 3, 0, 1, 5, 4, 7, 4, 6, 1, 5, 1

The length of this walk is thirteen. This walk has both repeated edges,
for example edge {4, 7} appears twice, and repeated vertices, for example
vertex 1 appear three times.

Definition 21 (circuit). A circuit is a closed trail.

The above example is not a circuit but we can obtain a circuit from it.

0 : 1, 2, 0, 3, 0, 1, 5,

remove︷︸︸︷
4, 7, 4, 6, 1, 5, 2

1 : 1, 2, 0, 3, 0, 1, 5, ︸︷︷︸
glue

4, 6, 1, 5, 1

2 : 1, 2,

remove︷︸︸︷
0, 3, 0, 1, 5, 4, 6, 1, 5, 1

3 : 1, 2, ︸︷︷︸
glue

0, 1, 5, 4, 6, 1, 5, 1

4 : 1, 2, 0, 1, 5, 4, 6, 1

remove︷︸︸︷
, 5, 1

→ 1, 2, 0, 1, 5, 4, 6, 1

The result is a circuit 1, 2, 0, 1, 5, 4, 6, 1 of length seven. By the nature of
closed walks there is always a repeated vertex: initial vertex is the same as
the last vertex of the walk. The class of closed walks for which the only
repeated vertex is the first and the last one is of special importance.

Definition 22 (cycle). A cycle is a closed walk v0e1v1 . . . , vn−1envn such that
vertices v0, . . . , vn−1 are all distinct.

Note that the index of vertices reaches n − 1 not n. For closed walks
v0 = vn.

36

The circuit 1, 2, 0, 1, 5, 4, 7, 1 is not a cycle since vertex 1 appear as the
forth vertex in the sequence. So there are two vertices in the set v0, . . . , vn−1
that are the same. However, that circuit contains two cycles:

1, 2, 0, 1 and 1, 5, 4, 6, 1

For any closed walk the first and the last vertex are always the same. For
this reason when describing a closed walk the last vertex will be omitted.
The cycle 1, 2, 0, 1 will be written as 1, 2, 0 and the cycle 1, 5, 4, 6, 1 would
be identified with 1, 5, 4, 6. Note also that the cycle 1, 2, 0 is the same as the
cycle 2, 0, 1 and the cycle 0, 1, 2. Likewise, 1, 5, 4, 6, 5, 4, 6, 1, 4, 6, 1, 5 and
6, 1, 5, 4 are the same cycle.

Remark: given a sequence 1, 2, 0 it is important to distinguish this se-
quence as a path, which has length two, from the cycle, which has length
three. The path with sequence 1, 2, 0 corresponds to the walk

1{1, 2}2{0, 2}0

whereas the cycle 1, 2, 0 corresponds to the walk

1{1, 2}2{0, 2}0{0, 1}1.

Remark: some text identify circuits with cycles. Here we distinguish those
two terms.

1.8 Special graphs

The following graphs are frequently encountered.

1.8.1 Empty graph En

The graph on n vertices with no edges is called the empty graph En. Then
E1 is a single vertex, E2 is a pair of vertices, E3 has three vertices and so
forth. An embedding of E3 is for example

37

1.8.2 Complete graph Kn

The graph on n vertices, where each pair of vertices is adjacent is called the
complete graphKn. For n = 1 the graphK1 is a single vertex and isomorphic
to E1, K2 is a single edge, K3 is a cycle of length three, K4 is isomorphic to
S(4, 1); K5 is

1.8.3 Bipartite graphs

Partition: recall a partition of a set S is a collection of its subsetsU1, . . . , Un

such that: (i) if i 6= j then Ui ∩ Uj = ∅; and (ii) S = U1 ∪ U2 ∪ · · · ∪ Un.

Definition 23 (bipartite graph). A graph G whose vertex set can be partitioned
into two sets A and B such that every edge in E(G) is incident with one vertex
in A and one vertex in B is called bipartite graph. The sets A and B are called a
bipartition.

Bipartite graphs encountered so far: P4, for any n the graph En, the
graph K2. Here is another bipartite graph:

38

If for a bipartite graph with bipartition A and B, every vertex in A is adja-
cent to every vertex in B the graph is known as the complete bipartite graph.
Further if the number of elements in A is n and the number of elements in
B is m the graph is denoted by Kn,m for example K2,3 is

and K3,3 is

39

Observe that K2 is the same as K1,1.
Bipartite graphs have some interesting properties and at the same time

are used to model quite a few real world problems: for example major
search engines use bipartite graphs to sell ad space. Bidding by advertis-
ers for keywords is settled as a bipartite graph problem: the vertices in
one partition are the advertisers, the vertices in the other partition are the
keywords and the edges are the bids advertisers place on queries.

1.8.4 Path Pn

A path of length n − 1 will be denoted as Pn, such paths can be viewed as
graphs. For example P1 is one vertex, that is P1 is isomorphic toE1 andK1.
For P3 we have

For any n the graph Pn is bipartite graph.

40

1.8.5 Cycle Cn

A cycle of length n ≥ 3 will be denoted as Cn, such cycle can be viewed as
graphs. For example C3 is

For obvious reasons C3 is often called a triangle; further C3 is isomorphic
to K3. For C4 we have

and for C5 we have

The graph Cn is bipartite if and only if n is even number.

1.9 Common graph measures

We describe some common terms derived about graphs

Definition 24 (girth). The girth of a graph is the length of a cycle of the shortest
length. If the graph has no cycles we will say its girth is +∞ i.e., positive infinity.

41

Remark: for a graph without cycles some text may assign alternative value
for the girth.

Example: Gex1 contains three cycles:

1. 1, 2, 4 of length three;

2. 2, 3, 4 of length three; and

3. 1, 2, 3, 4 of length four.

The shortest cycle is of length three thus its girth is three.

Example: Gex2 contains two cycles:

1. v1, v2, v3, v4 of length four.

2. v1, v5, v6, v7, v8 of length five.

The shortest cycle is of length four thus its girth is four.

Examples: the girth ofWG is three, the girth of the Petersen graph is five.
Cn has girth n, Pn has girth∞.

Definition 25 (distance). Let G be a graph and u and v be two vertices of G the
distance between u and v denoted by d(u, v) is the length of a shortest u, v-path.

Example: consider Gex3 . The distance between vertex 7 and vertex 3 is
four, since the path 7, 4, 5, 0, 3 is a 7, 3-path of length four and no shorter
path from 7 to 3 exists. Likewise, the distance between 3, 7 is also four. In
general it is straightforward to justify that d(u, v) = d(v, u).

For the same graph d(7, 1) = 3 and there are two 7, 1-paths of length
three: 1, 6, 4, 7 and 1, 5, 4, 7. Here is the list of all distances between pair of
vertices:

0 1 2 3 4 5 6 7

0 0 1 1 1 2 1 2 3
1 1 0 1 2 2 1 1 3
2 1 1 0 2 3 2 2 4
3 1 2 2 0 3 2 3 4
4 2 2 3 3 0 1 1 1
5 1 1 2 2 1 0 2 2
6 2 1 2 3 1 2 0 2
7 3 3 4 4 1 2 2 0

42

Example: the table for graph WG is

can car cat ear eat far fat nun rat run sun
can 0 1 1 2 2 2 2 ∞ 2 ∞ ∞
car 1 0 1 1 2 1 2 ∞ 2 ∞ ∞
cat 1 1 0 2 1 2 1 ∞ 1 ∞ ∞
ear 2 1 2 0 1 1 2 ∞ 2 ∞ ∞
eat 2 2 1 1 0 2 1 ∞ 1 ∞ ∞
far 2 1 2 1 2 0 1 ∞ 2 ∞ ∞
fat 2 2 1 2 1 1 0 ∞ 1 ∞ ∞
nun ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ 1 1
rat 2 2 1 2 1 2 1 ∞ 0 ∞ ∞
run ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ 0 1
sun ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ 1 0

Definition 26 (eccentricity). Let G be a graph and u be a vertex of G. The
eccentricity of u is the maximum distance from u to any vertex in G that is

e(u) = max
v∈V (G)

d(u, v)

Example: in a table of distance as above the maximum of each row (or
column since the table is symmetric along its diagonal) is the eccentricity
of the corresponding vertex. We have

• for Gex3

u 0 1 2 3 4 5 6 7

e(u) 3 3 4 4 3 2 3 4

• for WG

u can car cat ear eat far fat nun rat run sun

e(u) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Definition 27 (diameter). Let G be a graph. The maximum of all eccentricity of
the vertices of G is the diameter of G

d(G) = max
u∈V (G)

e(u)

43

Example: the maximum of the second row of each table of eccentricities
as above is the diameter of the graph. We have

• Gex3 has diameter four;

• WG has diameter∞.

Further we have

• Petersen graph has diameter two;

• Kn has diameter one;

• Pn has diameter n− 1

• Cn has diameter
⌊n

2

⌋
;

Theorem 6. If a simple graph G has diameter at least three then its complement
has diameter at most three.

Proof. If diameter of G is at least three it means there are two vertices u and
v such that they do not have a common neighbour. Then for any vertex in
x ∈ V (G) − {u, v} the vertex x is adjacent to at most one of u or v in G.
Thus in the complement of G the vertex x is adjacent to at least on of u or v.
Then for any two vertices x and y in the complement of G they either have
the same neighbour in {u, v} or since the edge uv is in the complement of
G there is path of length three along the edge uv from x to y.

Definition 28 (radius). Let G be a graph. The minimum of all eccentricity of the
vertices of G is the radius of G

r(G) = min
u∈V (G)

e(u)

Example: the minimum of the second row of each table of eccentricities
as above is the radius of the graph. We have

• Gex3 has radius two;

• WG has radius∞.

Further we have

• Petersen graph has radius two;

• Kn has radius one;

44

• Pn has radius
⌊
n− 1

2

⌋
;

• Cn has radius
⌊n

2

⌋
;

Definition 29 (center). The set of all vertices in a graph G with minimum eccen-
tricity is the center of G

C(G) = {u ∈ V (G) | e(u) = r(G)}

Examples: the center of

• Gex3 is the set {5};

• WG is the set V (WG);

• similar to WG the graphs Kn, Cn and Petersen graph have center the
set of their vertices

• the path P10 with vertex set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, where i is adja-
cent to i+ 1 and i− 1 has center

{4, 5}

1.10 Subgraphs

Definition 30 (subgraph). A subgraph G′ of a graph G is a graph such that
V (G′) ⊆ V (G) and the edges ofG′ are subset of the edges ofG such that each edge
in G′ is incident only with vertices in V (G′).

Remark: at a superficial glance the definition seems to have two condi-
tions. However, it has three conditions:

• the vertex set of the subgraph is a subset of the vertex set of the graph;

• the edge set of the subgraph is a subset of the edge set of the graph;
and

• the subgraph itself must be a graph.

For example,

• Ṽ = {v1, v3, v7, v8} ⊆ V (Gex2)

45

• Ẽ = {a, i, j} ⊆ E (Gex2)

but the pair (Ṽ , Ẽ) is not a graph (why?) therefore it cannot be a subgraph
Gex2 . The graphs SG1

v1

v2

v3

v4

v5
v6

v7
v8

and SG2

v2

v3

v4

v5

v7
v8

are both subgraphs of Gex2 . Naturally Gex2 is a subgraph of itself.

Proper subgraphs. By definition every graph is a subgraph of itself. This
is a trivial subgraph. Any other subgraph is called proper subgraph.

46

Remark: according to the above definition a graph on a single vertex E1

that is labelled 0 is not a subgraph of Gex2 since

{0} 6⊂ {v1, v2, v3, v4, v5, v6, v7, v8}.

However, E1 is isomorphic to the subgraph of Gex2 defined with vertex set
{v4} and empty edge set. In that sense E1 is a subgraph of Gex2 . When
labels are omitted a subgraph H of a graph G will refer to any graph to
isomorphic to H .

Example: consider WG. The graphs SWG1

cat
can

ear

run

car

fat

rat

nun
far

eat

sun

,

SWG2

47

cat
can

ear

run

car

fat

rat

nun

eat

sun

and SWG3

cat
can

ear

run

car

fat

rat

nun
far

eat

sun

are subgraphs of WG.

Definition 31 (spanning subgraph). A spanning subgraph of G is a subgraph
G′ of G such that V (G′) = V (G).

Example: from the examples described above SG1 is a spanning sub-
graph ofGex2 , whereas SG2 is not a spanning subgraph ofGex2 . The graphs
SWG1 and SWG3 are both spanning subgraphs of WG. The graph SWG2

is not a spanning subgraph of WG.

48

Vertex/edge deletion. If v ∈ V (G) then G− v denotes the graph what has
vertex V (G)− v and edge set

E(G)− {e ∈ E(G) | e is incident with v}.

For example SWG2 is the graph WG−’far’.
Similarly for an e inG the graph G−e is the graph with vertex set V (G)

and edge set E(G) − e. The idea can be generalized for a set of edges and
set of vertices. For example the graph

SG1 = Gex2 − {c, g, j} .

Natural extensions to deleting both edges and vertices are also possible.

Induced graphs. Denote the complement of a set S via S. For a vertex set
T ⊆ V (G) define the graph induced by T as

G[T] = G− T .

By construction induced graphs are subgraphs.

Example we have WG[{run, sun, nun}] is

run

nun

sun
,

the graph induced by {eat, cat, can, car, nun} is

49

cat
can

car nun

eat

,

Remark a set T induces unique graph. For example the graph SWG4a

run

nun

sun
,

is not equal (nor isomorphic) to the graph WG[{run, sun, nun}].

Definition 32 (clique). A clique of a graph G is a subset T of the vertex set
V (G) such that G[T] is isomorphic to the complete graph on |T | vertices.

Any pair of adjacent vertices is a clique of size two. For WG the set
{run, sun, nun} induces a clique of size three. Another clique of size three
is WG[{fat, rat, eat}]. The graph WG also has a clique of size four, namely
WG[{fat, rat, eat, cat}], but has no cliques of larger size.

50

Definition 33 (stable/independent set). An independent set of a graph G is
a subset T of the vertex set V (G) such that G[T] is isomorphic to the empty graph
on |T | vertices.

Any pair of vertices that are not adjacent is an independent set of size
two. The graph WG has an independent sets

• {car, nun} of size two;

• {far, nun, rat} of size three;

• {car, fat, nun} of size three;

• {can, eat, far} of size three;

• {can, eat, far, sun} of size four;

• {can, eat, far, nun} of size four.

Maximum vs maximal. The term maximal means “cannot be enlarged”.
The term maximum means “of largest size”. For example, the independent
set {car, fat, nun} is maximal since no other independent set contains is
properly, but it is not maximum since there is another independent set of
larger size. The independent set {can, eat, far, nun} is maximum size inde-
pendent set. For the independent set {can, eat, far}we have

{can, eat, far} ({can, eat, far, nun}

therefore it is not maximal. It is not maximum as well. In terms of cliques

• {nun, sun, run} is maximal but not maximum;

• {rat, fat, eat} is neither maximal nor maximum;

• {rat, fat, cat} is neither maximal nor maximum;

• {rat, fat, cat, eat} is both maximal and maximum;

• {cat, can, car} is maximal but not maximum.

51

1.11 Connected graphs

Definition 34 (connected graph). A connected graph G is a graph such that
there is a path between any two vertices in G.

Of the graph examples in discussed in §1.1 only WG is not connected.
The rest are connected graphs. Kn, Cn, Pn and E1 are connected graphs.
For n > 1 the graph En is not connected. Graphs that are not connected are
often called disconnected.

Theorem 7. Every connected graph of size greater or equal to two has at least two
vertices of the same degree.

Proof. Self study problem (hint: pigeonhole principle).

Definition 35 (maximal connected subgraph). A maximal connected sub-
graph of G is a subgraph H such that if G′ is connected subgraph of G and H is
subgraph of G′ then H = G′.

A connected graph will have a single maximal connected subgraph
since the graph it self is not proper subgraph of any of its subgraphs.

The graph SWG4a from §1.10 is a connected subgraph of WG since
there is a path between any pair of vertices in SWG4a. However, that
graph is not maximal since there is a subgraph of WG, namely SWG4 such
that SWG4a is a subgraph of SWG4. Take any subgraph H of WG, such
that SWG4 is a subgraph of H as well. Then either H is disconnected or
SWG4 = H . Which means SWG4 is a maximal connected subgraph of
WG. Further, neither

cat
can

ear

car

fat

rat

eat

,

52

nor

cat
can

ear

car

fat

rat

far
eat

,

are maximal connected subgraphs of WG. The former is contained in the
latter where as the latter is contained in the graph induced by

{fat, rat, eat, cat, far, ear, car, can}

namely,

cat
can

ear

car

fat

rat

far
eat

,

In other words WG [{fat, rat, eat, cat, far, ear, car, can}] is a maximal con-
nected subgraph of WG.

Definition 36 (component). A maximal connected subgraph of a graph G is
called a component of G.

53

Examples: connected graphs have one component. The graph WG has
two components namely,

• WG [{fat, rat, eat, cat, far, ear, car, can}] and

• WG [{nun, run, sun}]

An equivalent description of connected graphs is given via

Theorem 8. A graph G is connected if and only if, there is vertex u in V (G) such
that there is a path from u to x for all vertices x in V (G).

Proof. Suppose G is connected and let u be any vertex in V (G). Since G is
connected there is a path from u to x for any vertex x ∈ V (G).

Suppose now G has a vertex u such that there is a path from u to any
other vertex in V (G). Let x, y be any two vertices in V (G). By assumption

1. there is a path from x to u, i.e., there is a path

px = xe1v1e2v2 . . . en−1vn−1enu

2. there is a path from y to u, i.e., there is a path

py = ue′1v
′
1e
′
2v
′
2 . . . e

′
k−1v

′
k−1e

′
ky

Combining px and py we obtain the walk

pxy = xe1v1e2v2 . . . en−1vn−1enue
′
1v
′
1e
′
2v
′
2 . . . e

′
k−1v

′
k−1e

′
ky

There is a walk from x to y, by Theorem 4 there is a path from x to y. Since
x and y were arbitrary vertices it follows that the graph is connected.

Theorem 9. For every connected graph G the vertices can be enumerated

v1, v2, . . . , vn

such that the graph Gi induced by v1, . . . , vi i.e., Gi = G[v1, v2, . . . , vi] is con-
nected for every i.

Proof. Pick a vertex at random and denote it as v1. G1 is connected and
assume by induction that for i, v1, . . . , vi are such that the graph Gi is con-
nected. Let v ∈ G−Gi. Since G is connected there is a path from v1 to v in
G. Define vi+1 as the first vertex on the path from v1 to v that is not in Gi.
Then vi+1 has a neighbour in v1, . . . , vi and the connectedness of Gi follows
by induction.

54

The above results are concerned with connected graphs. Let us discuss
disconnected graphs a bit.

Definition 37 (induced cut). Let G be a graph and X ⊂ V (G). The set of all
edges incident with exactly one vertex in X is called the cut induced by X .

Example: in WG we have

• the cut induced by {far} ⊆ V (WG) is

{{far, car}, {far, ear}, {far, fat}} ⊆ E(WG)

• the cut induced by {far, car} ⊆ V (WG) is

{{far, ear}, {far, fat}, {car, ear}, {car, can}, {car, cat}} ⊆ E(WG)

• the cut induced by {far, can, nun } ⊆ V (WG) is

{{far, ear}, {far, fat}, {can, car}, {can, cat}, {nun, sun}{nun, run}} ⊆ E(WG)

• the cut induced by {nun, run, sun } ⊆ V (WG) is empty.

Induced cuts let us prove that certain graphs are disconnected

Theorem 10. A graphG is disconnected if and only if there is a proper non-empty
subset X of the vertex set of G such that the cut induced by X is empty.

Proof. Let G be is connected graph on at least two vertices and suppose by
contradiction there is proper subset X of the vertex set of G such that the
cut induced by X is empty. Let u ∈ X and w ∈ V (G) −X . The vertices u
and w exists since X is proper subset of the vertex set. Since G is connected
there is uw path in G, say the path is v0, v1, . . . , vk−1, vk where v0 = u and
vk = w. Let i be the first index such that vi ∈ X and vi+1 ∈ V (G)−X . Such
index exists since v0 = u ∈ X and vk = w ∈ V (G) − X . Then the edge
vivi+1 has exactly one end in X thus the cut induced by X is non-empty, a
contradiction.

Suppose now G is disconnected, which means it has at least two com-
ponents H1 and H2. Let X denote the vertex set of H1. Then X is a proper
subset of the vertex set of G. If e = (uv) is an element of the cut induced
by X then either u or v but not both are element of X . Without loss of
generality assume u ∈ X . Consider the subgraph H̃ of G defined as

55

• V (H̃) = X ∪ v

• E(H̃) = E(H1) ∪ (uv).

Then H1 is a proper subgraph of H̃ and H̃ is connected contradicting max-
imality of H1. Therefore the cut induced by X is empty completing the
argument.

1.11.1 Bridges and cut vertices

Definition 38. A cut edge of a graph G is an edge e ∈ E(G) such that the
number of components of G− e is strictly greater than the number of components
of G.

Remark: a cut edge is often called a bridge. Some software tools (and
likely texts) define bridges as cut edges of connected graphs. Thus discon-
nected graphs may contain cut edges but no bridges. In these notes any cut
edge is a bridge.

Example: The edges (0, 3) and (4, 7) are both bridges in Gex3 . The graph
in §1.3.2 has bridges (0, 11), (0, 6) and (0, 1). Note that if you remove a
bridge the number of components increases by one and the vertices inci-
dent with the bridge are in different components. This is not a coincidence.

Theorem 11. If e = (x, y) is a bridge of a connected graph G, then G − e has
precisely two components; furthermore x and y are in different components.

Proof. Let e = (u, v). Suppose e is a bridge then G − e has at least two
components. Let Vu be the set of vertices in G − e such that there is a path
from any vertex x ∈ Vu to u. Let y be any vertex of G− e such that y 6∈ Vu.
There is at least one such vertex since G − e has at least two components.
Since there is a path from y to u in G and no path from y to u in G− e, then
any path from y to u in G is of the form

ueve1v1 . . . vn−1eny

Then there is a path ve1v1 . . . vn−1eny from any vertex in G − e to v and
therefore every vertex not in Vu is in the same component as v.

Neither WG nor Gex2 contain any bridges. The fact can be establish by
the following theorem.

56

Theorem 12. Edge e is a cut-edge of a graph G if and only if e is not in any cycle
of G.

Proof. First we show that if e = (ab) is an edge in a cycle then e cannot
be a bridge. Let ae1v1e2v2 . . . vn−1enbea be a cycle that contains e. Then
ae1v1e2v2 . . . vn−1enb is a path from a to b in G − e. If e were a bridge then
in G− e by Theorem 11 a and b would be in different components a contra-
diction. Therefore if e is a bridge then e is not in any cycle of G.

If e is not in any cycle, then there is only one path from a to b which is
the path aeb. Indeed if there were to be another path ae1v1 . . . vn−1enb that
do not contain e then ae1v1 . . . vn−1enbea would be a cycle that contains e.
Since e is not in the graph G − e then a and b are in different components
of G− e. And furthermore G− e has more components than G. Thus e is a
bridge.

The above result implies the following

Theorem 13. If there are two distinct paths from vertex v to vertex u in G then
G has a cycle.

Proof. Self study problem.

Definition 39. A vertex u ∈ V (G) is a cut vertex if G−u has more components
than G.

Example in Gex2 the vertex 1 is a cut vertex. In Gex3 cut vertices are 0 and
4. Note that vertices 3 and 7 are not cut vertices.

Example in §1.3.3 the vertex 0 is a cut vertex and it is not incident with
any bridge.

Remark it is fairly trivial to come up with examples where removing u
from G adds more that one component: e.g., consider vertex 0 in the graph
in §1.3.2. Further a cut vertex may be part of a cycle as illustrated by vertex
1 for the graph Gex3 .

57

1.12 Trees

Definition 40 (tree). A graph without cycles or an acyclic graph is called a for-
est. An acyclic connected graph is called a tree.

Examples: En is a forest, Pn is a tree for any n. The following graph is
also a tree

0
1

2

3

4

5
6

7

8

9

10

11

However, trees and forests can be drawn with no edge crossings, one such
embedding for the tree above is

0 1

2

3

4

5

6

7

8
9

10

11

Last but not least trees are drawn on levels such as

58

0 12

34

5

6

7

8

9

10

11

Trees have wide ranging use in graph theory and posses a number of
important properties. The following theorem established multiple equiva-
lent ways to define a tree.

Theorem 14. The following are equivalent for a graph T :

1. T is a tree;

2. any two vertices in T are connected by a unique path;

3. T is minimally connected, that is every edge is a cut edge;

4. T is maximally acyclic, that is T + xy contains a cycle for any two non-
adjacent vertices x and y in T ;

(2⇒ 1). Since there is a path between any two vertices the graph is con-
nected. If there is a cycle then there are two vertices that are connected
with at least two distinct paths contradicting the assumption and hence the
graph has no cycles. Thus it must be a tree.

(3⇒ 1). By assumption the graph is connected. Since every edge is a cut
edge, by Theorem 12 no edge is in a cycle and thus there are no cycles hence
the graph is a tree.

(4⇒ 1). Let u, v be two vertices. Suppose they are not adjacent. Then by
assumption T + (uv) contains a cycle and since T does not contain a cycle
then the edge (uv) is in the cycle. Thus there are two paths from T + (uv)
from u to v. One of those paths does not contain (uv) and it must therefore
lie all within T . Hence T is connected and acyclic thus a tree.

59

(1⇒ 2). Suppose vertices u, v are connected by two distinct paths

P1 = ue1w1e2w2 . . . env

and
P2 = ue′1w

′
1e
′
2w
′
2 . . . e

′
nv.

Let wk be such that for all j ≤ k we have that ejwj = e′jw
′
j . Let wl be the

first vertex on both paths such that l > k. Then there is a cycle in the graph
from wk to wl along the two paths a contradiction.

(1⇒ 3). By Theorem 12 an edge is a bridge if it is in no cycles. Since a tree
contains no cycles, none of the edges in a tree can be part of a cycle and
therefore each edge is a bridge.

(1⇒ 4). Let u, v be any two non-adjacent vertices in T . Since T is con-
nected there is a path from u to v in T . Along with the edge (uv) this forms
a cycle.

Motivation: at least how many edges you need to connect dots on the
plane. If you have more do you necessarily have a cycle? The answer to
this question establishes a relation between the size and the order of a tree.

Theorem 15. For any tree with q edges and p vertices we have that q = p− 1.

Proof. By induction on the number of vertices.
Base case: p = 1: since there are no edge in a tree with one vertex p = 1
and q = 0 = p− 1 = 1− 1 and the result holds.
Assumption: assume the statement holds for any tree with at most p ver-
tices.
Inductive step: Let T be a tree with p + 1 vertices. Take any edge e of T
and consider T − e. Since e is a bridge and T is connected then T − e has
two components, say T1 and T2. Suppose that T1 has p1 vertices and T2 has
p2 vertices. Both T1 and T2 contain no cycles, are connected and therefore
they are trees. We apply the inductive hypothesis to these trees separately
and obtain q1 = p1 − 1 and q2 = p2 − 1, where q1 and q2 are the number
of vertices in T1 and T2, respectively. By construction the number of ver-
tices in T is p1 + p2, and number of edges is q = q1 + q2 + 1 where the
additional 1 is for the edge e. Substituting with the values for q1 and q2 we
obtain q = q1 + q2 + 1 = p1 − 1 + p2 − 1 + 1 = p − 1, which concludes the
argument.

60

The next result concerns the number of degree one vertices in a tree.
Such vertices are called leaves. For the tree defined in the beginning of this
section the leaves are 0, 1, 3, 4, 6, 7, 10, 11. There are three alternative proofs
for the theorem since each one illustrates a different technique that can be
used with graphs.

Theorem 16. A tree with at least two vertices has at least two leaves.

Direct proof. Let p = v0e1v1 . . . vn−1envn be a longest path in T . (A longest
path is a path for which no other path in the tree has a longer length, for
the result maximal path also suffices). This path has length at least one
since it contains at least two vertices and hence at least one edge. Consider
vertex v0. If the degree of v0 is greater than 1 then there must be another
edge incident with v0 other than e1. Say this is the edge e′. Let e′ be (v0, w).
There are two possible scenarios: either w = vi for some i or w is not a ver-
tex that appears in the path p. In the first case v0e1 . . . vi−1eiwe′v is a cycle
which contradicts the fact that the graph is a tree. In the second scenario
we′v0e1v1 . . . vn−1envn is a path in the graph that has length strictly greater
than the length of p contradicting the fact that p is a longest path. In either
scenario we have a contradiction and therefore the degree of v0 is one. Sim-
ilar argument applies to vn and hence in the three at least v0 and vn have
degree one completing the argument.

Proof by counting. Let ni be the number of vertices of degree i ≥ 0. Then for
p then number of vertices in the tree we have

p = n1 + n2 + · · ·

By the Handshake lemma 1 we have

2q =
∑

d(v) = n1 + 2n2 + 3n3 + · · · ,

where q is the number of edges in the tree. By Theorem 15 we have that

q = −1 + p = −1 + n1 + n2 + n3 +

Substituting p in the first equation and rearranging its terms we get

n1 = 2 + n3 + 2n4 + 3n5 + · · · ≥ 2

61

Proof by induction. By induction on the number of vertices.
Base case: p = 2: a tree with two vertices is isomorphic to K2 and it con-
tains two vertices of degree one.
Assumption: assume the statement holds for any tree with at most p ≥ 2
vertices.
Inductive step: Let T be a tree with p+ 1 ≥ 3 vertices. Take any edge e of T
and consider T−e. Since e is a bridge and T is connected then T−e has two
components, say T1 and T2. Suppose that T1 has p1 vertices and T2 has p2
vertices. Both T1 and T2 contain no cycles, are connected and therefore they
are trees. Further since p1 + p2 = p+ 1 ≥ 3 either p1 ≥ 2 or p2 ≥ 2, or both.
Without loss of generality assume p1 ≥ 2. Then by induction T1 contains at
least two vertices of degree one say u1 and u2. Suppose e is incident with
vertices x and y, without loss of generality x ∈ T1 and y ∈ T2. Thus x is
incident with at most one of u1 or u2. Then in T at least one of u1 or u2 is a
vertex of degree one. For the other vertex of degree one consider the cases:

1. if p2 ≥ 2 then by induction T2 contains at least two vertices of degree
one say v1 and v2. Since e is incident with at most one of them then at
least one of them is of degree one in T .

2. if p2 = 1 edge e is incident with the (single) vertex of T2 and therefore
in T that vertex has degree one.

In either case T contains at least two vertices of degree one completing the
argument.

The result generalizes to forests. To conclude this section we prove.

Theorem 17. Trees are bipartite graphs.

Proof. Let T be a tree and r be a vertex of T . Define the set A ⊆ V (T) be
the set of all vertices in T such that the path from r to u ∈ A is of even
length. This is a well defined function as there is a unique path from r to
u by Theorem 14. Let B be the set of all vertices in T such that the length
of the path from r to u ∈ B is of odd length. Then A and B partition V (T).
Let e = (xy) be an edge incident with vertices x and y. Denote the unique
path from r to x with Prx = re1v1e2v2 . . . ek−1vk−1ekx. Then either Prxey is
the path from r to y or vk−1 = y and ek = e; else there is more than one path
to either x or y in T a contradiction. Since no consecutive integers have the
same parity the vertices x and y cannot be both in A or both in B. Thus e
is incident with one vertex in A and one vertex in B, showing that T is a
bipartite graph.

62

1.13 Spanning trees

When considering a graph, it is in general useful to consider a compo-
nent thus reducing the problem to connected graphs. From the set of sub-
graphs of a connected graph a subgraph that preserves connectivity with
the fewest possible edges is an important starting point.

Definition 41. A spanning subgraph that is also a tree is called a spanning tree.

To establish formally that every connected graph has a spanning tree
the following results suffice.

Theorem 18. Every connected graph has a spanning tree.

Proof. Let G be a connected graph. Delete edges from the cycles of G one
by one until the graph is acyclic. Since the edges that are deleted are in a
cycle the subgraph is also connected. Thus it is a tree with the same vertex
set meaning it is a spanning tree.

Before moving onto the second result here is an example that illustrates
the above argument. Recall Gex3

0 1

2

3

4
5

6

7

Edge {4, 7} is a cut edge so it cannot be removed. Edge {4, 6} is in a cycle
for example the cycle 4, 6, 1, 0, 5 so look at graph S1 = Gex3 − {4, 6}

63

0 1

2

3

4

5

6

7

In the new graph edge {6, 1} is a cut edge so it cannot be removed. But
{0, 1} is not a cut edge so consider S1 − {0, 1} = Gex3 − {{0, 1}, {4, 6}}

0 1

2

3

4

5

6

7

In the last graph {1, 2} is not a cut edge since it is in the cycle 1, 2, 0, 5 so it
can be removed to obtain Gex3 − {{0, 1}, {1, 2}, {4, 6}}

64

0 1

2

3

4

5

6

7

The resulting graph contains no cycles, it is connected and therefore a tree.
Further it is a spanning graph and therefore a spanning tree. An alternative
embedding which illustrate the fact it is a tree is

01

23

4

5

6

7

Theorem 19. If a graph has a spanning tree then the graph is connected.

Proof. If T is a spanning tree of G then every path in T is also a path in G.
Since T is a tree it is connected and thus between any pair of vertices there
a T -path (a path that has only edge in T). Since every edge of T is also an
edge in G any T path is also a G path and thus any pair of vertices in G is
connected. Thus G is connected.

65

The above two theorems imply that a graph is connected if and only if
it as a spanning tree. Furthermore.

Theorem 20. If G is connected with p vertices and p− 1 edges then G is a tree.

Proof. By Theorem 19 the graph G has a spanning tree T . Since T is span-
ning tree it has p vertices and by Theorem 15 it has p− 1 edges. Since G has
p − 1 edges every edge of G is in T and thus the edge set and vertex set of
T and G coincide, thus they are the same graph. Hence G is a tree.

A corollary to the results established so far is the following classification
of bipartite graphs.

Theorem 21. A graph is bipartite if and only if it has only even cycles.

Proof. Self study problem.

1.14 BFS

The steps below describe the so called Breadth First Search tree algorithm
for finding a spanning tree of a graph if one exists. It is a first in first
out (FIFO) type algorithm and has a natural last in first out (LIFO) vari-
ant known as Depth First Search (DFS) tree algorithm.

1. start with an empty (FIFO) list l and a (random) vertex u1;

2. set pr(u1) = ∅;

3. start with a graph T where V (T) = u1 and E(T) = ∅

4. label vertex u1 active

5. for every edge e = (v, u) incident with the active vertex v do

(a) if u ∈ V (T) skip e and u
(b) else if u 6∈ V (T) add u to the list l;
(c) V (T) = V (T) ∪ u
(d) E(T) = E(T) ∪ (v, u)

(e) set pr(u) = v

6. remove the vertex v from the list and

(a) if l is not empty label the first vertex active and go to Step 5
(b) else terminate the algorithm by outputting T

66

Remark. In practice rather than selecting a random initial vertex u1 one
chooses the starting vertex depending on the problem at hand. That initial
vertex is known as the root of the BFS tree. The BFS tree is output of the
algorithm.

1.14.1 Example: connected graph

Recall Gex3 from §1.1.4

0 1

2

3

4
5

6

7

We will apply the algorithm with root vertex 6. As describe the algorithm
itself at is ambiguous about the order of which edges are processed at
Step 5. Since graphs in many ways are stored as matrices adopt the con-
vention that edges are processed by ordering the labels on incident with
edges. For example when vertex i is active it is natural to sweep the ith
row of the adjacency matrix from left to right that before checking if vertex
j is incident with vertex i all vertices with index smaller than j should al-
ready have been processed. Let us denote the BFS tree of graphGwith root
r using such convention with BFS(GEx3 ,6). That is

BFS(GEx3 ,6) random vertex = 6 set initial T

6

67

FIFO= [6]
Active vertex = 6

process edge (1,6):
add vertex 1 and edge (1,6) to T

6

1

add vertex 1 to FIFO
FIFO=[6, 1]

set pr(1) = 6
process edge (4,6):

add vertex 4 and edge (4,6) to T

6

14

add vertex 4 to FIFO
FIFO=[6, 1, 4]

set pr(4) = 6
remove 6 from FIFO

FIFO= [1, 4]
Active vertex = 1

process edge (0,1):
add vertex 0 and edge (0,1) to T

68

6

14

0

add vertex 0 to FIFO
FIFO=[1, 4, 0]

set pr(0) = 1
process edge (1,2):

add vertex 2 and edge (1,2) to T

6

14

02

add vertex 2 to FIFO
FIFO=[1, 4, 0, 2]

set pr(2) = 1
process edge (1,5):

add vertex 5 and edge (1,5) to T

6

14

025

69

add vertex 5 to FIFO
FIFO=[1, 4, 0, 2, 5]

set pr(5) = 1
process edge (1,6): 6 in T - skip
remove 1 from FIFO

FIFO= [4, 0, 2, 5]
Active vertex = 4

process edge (4,5): 5 in T - skip
process edge (4,6): 6 in T - skip
process edge (4,7):

add vertex 7 and edge (4,7) to T

6

14

0257

add vertex 7 to FIFO
FIFO=[4, 0, 2, 5, 7]

set pr(7) = 4
remove 4 from FIFO

FIFO= [0, 2, 5, 7]
Active vertex = 0

process edge (0,1): 1 in T - skip
process edge (0,2): 2 in T - skip
process edge (0,3):

add vertex 3 and edge (0,3) to T

70

6

14

0257

3

add vertex 3 to FIFO
FIFO=[0, 2, 5, 7, 3]

set pr(3) = 0
process edge (0,5): 5 in T - skip
remove 0 from FIFO

FIFO= [2, 5, 7, 3]
Active vertex = 2

process edge (0,2): 0 in T - skip
process edge (1,2): 1 in T - skip
remove 2 from FIFO

FIFO= [5, 7, 3]
Active vertex = 5

process edge (0,5): 0 in T - skip
process edge (1,5): 1 in T - skip
process edge (4,5): 4 in T - skip
remove 5 from FIFO

FIFO= [7, 3]
Active vertex = 7

process edge (4,7): 4 in T - skip
remove 7 from FIFO

FIFO= [3]
Active vertex = 3

71

process edge (0,3): 0 in T - skip
remove 3 from FIFO

FIFO= []
terminate and output T

Remark. Consider vertex 1 it has neighbourhood {0, 2, 5, 6}. When 1 was
active according to the convention adopted for Step 5 first edge (1, 0) was
processed then (1, 2) then (1, 5) and finally (1, 6). The order in which the
vertices entered the tree is 6, 1, 4, 0, 2, 5, 7, 3.

Non-tree edges. The set of edges E(GEx3) − E(T) that is the set of all
edges of GEx3 that are not in the tree T are called non-tree edges. For this
particular example the non-tree edges are

(0, 2), (0, 5), (4, 5)

Example for BFS(GEx3 ,5) we have

BFS(GEx3 ,5) random vertex = 5 set initial T

5

FIFO= [5]
Active vertex = 5

process edge (0,5):
add vertex 0 and edge (0,5) to T

5

0

add vertex 0 to FIFO
FIFO=[5, 0]

set pr(0) = 5

72

process edge (1,5):
add vertex 1 and edge (1,5) to T

5

01

add vertex 1 to FIFO
FIFO=[5, 0, 1]

set pr(1) = 5
process edge (4,5):

add vertex 4 and edge (4,5) to T

5

014

add vertex 4 to FIFO
FIFO=[5, 0, 1, 4]

set pr(4) = 5
remove 5 from FIFO

FIFO= [0, 1, 4]
Active vertex = 0

process edge (0,1): 1 in T - skip
process edge (0,2):

add vertex 2 and edge (0,2) to T

5

014

2

73

add vertex 2 to FIFO
FIFO=[0, 1, 4, 2]

set pr(2) = 0
process edge (0,3):

add vertex 3 and edge (0,3) to T

5

014

23

add vertex 3 to FIFO
FIFO=[0, 1, 4, 2, 3]

set pr(3) = 0
process edge (0,5): 5 in T - skip
remove 0 from FIFO

FIFO= [1, 4, 2, 3]
Active vertex = 1

process edge (0,1): 0 in T - skip
process edge (1,2): 2 in T - skip
process edge (1,5): 5 in T - skip
process edge (1,6):

add vertex 6 and edge (1,6) to T

5

014

236

add vertex 6 to FIFO
FIFO=[1, 4, 2, 3, 6]

74

set pr(6) = 1
remove 1 from FIFO

FIFO= [4, 2, 3, 6]
Active vertex = 4

process edge (4,5): 5 in T - skip
process edge (4,6): 6 in T - skip
process edge (4,7):

add vertex 7 and edge (4,7) to T

5

014

2367

add vertex 7 to FIFO
FIFO=[4, 2, 3, 6, 7]

set pr(7) = 4
remove 4 from FIFO

FIFO= [2, 3, 6, 7]
Active vertex = 2

process edge (0,2): 0 in T - skip
process edge (1,2): 1 in T - skip
remove 2 from FIFO

FIFO= [3, 6, 7]
Active vertex = 3

process edge (0,3): 0 in T - skip
remove 3 from FIFO

FIFO= [6, 7]
Active vertex = 6

process edge (1,6): 1 in T - skip

75

process edge (4,6): 4 in T - skip
remove 6 from FIFO

FIFO= [7]
Active vertex = 7

process edge (4,7): 4 in T - skip
remove 7 from FIFO

FIFO= []
terminate and output T

In BFS(GEx3 ,5) vertices enter the tree in order

5, 0, 1, 4, 2, 3, 6, 7

the non-tree edges are
(0, 1), (1, 2), (4, 6)

Exercise check that BFS(GEx3 ,7) vertices enter the tree in order

7, 4, 5, 6, 0, 1, 2, 3

and the non-tree edges are

(0, 1), (1, 2), (1, 6)

1.14.2 Example: disconnected graph

Recall the disconnected graph WG from §1.1.5.

Example random vertex = far set initial T

far

FIFO= [’far’]
Active vertex = far

process edge (far,fat):
add vertex fat and edge (far,fat) to T

76

far

fat

add vertex fat to FIFO
FIFO=[’far’, ’fat’]

set pr(fat) = far
process edge (ear,far):

add vertex ear and edge (ear,far) to T

far

fatear

add vertex ear to FIFO
FIFO=[’far’, ’fat’, ’ear’]

set pr(ear) = far
process edge (car,far):

add vertex car and edge (car,far) to T

far

fatearcar

add vertex car to FIFO
FIFO=[’far’, ’fat’, ’ear’, ’car’]

set pr(car) = far
remove far from FIFO

FIFO= [’fat’, ’ear’, ’car’]
Active vertex = fat

process edge (cat,fat):
add vertex cat and edge (cat,fat) to T

77

far

fatearcar

cat

add vertex cat to FIFO
FIFO=[’fat’, ’ear’, ’car’, ’cat’]

set pr(cat) = fat
process edge (far,fat): far in T - skip
process edge (fat,rat):

add vertex rat and edge (fat,rat) to T

far

fatearcar

catrat

add vertex rat to FIFO
FIFO=[’fat’, ’ear’, ’car’, ’cat’, ’rat’]

set pr(rat) = fat
process edge (eat,fat):

add vertex eat and edge (eat,fat) to T

far

fatearcar

catrateat

78

add vertex eat to FIFO
FIFO=[’fat’, ’ear’, ’car’, ’cat’, ’rat’, ’eat’]

set pr(eat) = fat
remove fat from FIFO

FIFO= [’ear’, ’car’, ’cat’, ’rat’, ’eat’]
Active vertex = ear

process edge (ear,far): far in T - skip
process edge (ear,eat): eat in T - skip
process edge (car,ear): car in T - skip
remove ear from FIFO

FIFO= [’car’, ’cat’, ’rat’, ’eat’]
Active vertex = car

process edge (car,cat): cat in T - skip
process edge (car,far): far in T - skip
process edge (can,car):

add vertex can and edge (can,car) to T

far

fatearcar

catrateatcan

add vertex can to FIFO
FIFO=[’car’, ’cat’, ’rat’, ’eat’, ’can’]

set pr(can) = car
process edge (car,ear): ear in T - skip
remove car from FIFO

FIFO= [’cat’, ’rat’, ’eat’, ’can’]
Active vertex = cat

process edge (cat,rat): rat in T - skip
process edge (cat,eat): eat in T - skip
process edge (can,cat): can in T - skip

79

process edge (cat,fat): fat in T - skip
process edge (car,cat): car in T - skip
remove cat from FIFO

FIFO= [’rat’, ’eat’, ’can’]
Active vertex = rat

process edge (cat,rat): cat in T - skip
process edge (eat,rat): eat in T - skip
process edge (fat,rat): fat in T - skip
remove rat from FIFO

FIFO= [’eat’, ’can’]
Active vertex = eat

process edge (cat,eat): cat in T - skip
process edge (eat,rat): rat in T - skip
process edge (eat,fat): fat in T - skip
process edge (ear,eat): ear in T - skip
remove eat from FIFO

FIFO= [’can’]
Active vertex = can

process edge (can,cat): cat in T - skip
process edge (can,car): car in T - skip
remove can from FIFO

FIFO= []
terminate and output T

Remark. Observe that the output tree does not contain all vertices that
are in WG. In particular vertices

nun, sun, run

are not in the output tree T .

Remark. Check that any BFS tree rooted at “sun′′ does not contain ver-
tices

far, fat, ear, eat, cat, car, can, rat

80

1.14.3 Properties of BFS trees

An important algorithmic issue is running time and termination of an al-
gorithm. For the BFS algorithm described here observe that once a vertex
enters the tree T that vertex is never added to the FIFO list. Therefore ev-
ery vertex enters the FIFO list at most once. We have a finite number of
vertices so to the FIFO only a finite number of vertices is added throughout
the algorithm. At Step 6 the FIFO list looses a vertex. Thus at some point
the FIFO list becomes empty and the algorithm terminates. The focus from
now on is on the properties of the output.

Theorem 22. The BFS algorithm terminates by outputting a tree T .

Proof by induction. Base case. The graph T contains a single vertex thus it is
a tree.
Assumption. For k ≥ 0 the graph T is a tree with k+1 vertices and k edges.
Inductive step. If the algorithm terminates as step k + 1 we are done. Oth-
erwise, the algorithm adds the same number of edges and vertices, pre-
serves connectivity (there is a path from any vertex to the active vertex).
A connected graph of size one less than the order is a tree and the result
follows.

Corollary 1. If T has less vertices than G then G is disconnected, otherwise T is
a spanning tree.

So far nothing was said about Step 2 and Step 5(e). Let

• pr0(u) = u and

• for k ≥ 1 define prk(u) = pr
(
prk−1(u)

)
for any vertex. We can now talk about the parent - child relation between
vertices established via the relation pr. The root r vertex has no parent.
Every vertex for which pr(u) = r has parent r an every such vertex is a
child of r. Likewise every vertex for which pr(u) = v has parent v an every
such vertex is a child of v. For vertices u and v if there is an integer k such
that prk(v) = u then we say that u is an ancestor of v. To that end the root is
an ancestor of all other vertices in a BFS tree.

Example: for BFS(GEx3 ,6) obtained in §1.14.1 we have parent of vertex 0
is vertex 1, the vertices 1 and 6 are ancestors of vertex 0. Vertex 0 has one
child vertex 3. Vertex 1 has three children, vertex 0, vertex 2 and vertex 5.
Its parent is vertex 6. Vertex 6 is the only ancestor of vertex 1. Vertex 6 has

81

children vertex 1 and vertex 4. The parent of vertex 2 is vertex 1 and its
ancestors are vertex 1 and vertex 6.

Example: The parent child relation depends on the BFS tree! For BFS(GEx3 ,5)
obtained in §1.14.1 we have parent of vertex 2 is vertex 0, the vertices 0 and
5 are ancestors of vertex 2. The parent of 3 is also vertex 0 and its ancestors
are also 0 and 5. The parent of vertex 1 is 5. Vertex 1 had child vertex 6.
The (only) ancestor of vertex 1 is vertex 5. Vertex 7 has no children, it has
parent vertex 4 and ancestors 4 and 5.

Definition 42. A level of a vertex u in a BFS tree with root r is the integer k such
that prk(u) = r.

Example: for BFS(GEx3 ,6) obtained in §1.14.1. Vertex 6 has level zero;
vertex 1 and vertex 4 have level one; vertex 0, vertex 2, vertex 5 and vertex
7 have level two; and lastly vertex 3 has level three. The vertices enter the
tree in order putting the levels of each vertex below it we have

u 6 1 4 0 2 5 7 3
level(u) 0 1 1 2 2 2 2 3

For BFS(GEx3 ,5) similar table is

u 5 0 1 4 2 3 6 7
level(u) 0 1 1 1 2 2 2 2

The fact that the levels given the order in which vertices enter a tree is
weakly increasing is not a coincidence.

Theorem 23. Vertices enter a BFS tree in non-decreasing order of level

Proof. By induction. The first vertex is at level zero. Assume for the first
m vertices the result holds. Consider the next vertex v that joins the tree
at stage m + 1. Then pr(v) = u, where u is the active vertex. level(v) =
level(u)+1. Consider any other non-root vertex x in the tree at stagem+1.
Let pr(x) = y, hence level(x) = level(y) + 1. There are two cases y = u or y
was active before u by induction hypothesis

level(y) ≤ level(u).

Then
level(x) = level(y) + 1 ≤ level(u) + 1 = level(v)

hence if x was added before v then level(x) is no larger than level(v).

82

Any edge of a BFS tree is incident with vertices that are exactly one level
apart. Consider the non-tree edges in a BFS tree. In BFS(GEx3 ,6) obtained
in §1.14.1 for each non-tree edge

• (0, 2) joins vertices at the same level;

• (0, 5) joins vertices at the same level;

• (4, 5) joins vertices one level apart.

In BFS(GEx3 ,5) for each non-tree edge we have

• (0, 1) joins vertices at the same level;

• (1, 2) joins vertices one level apart.

• (4, 6) joins vertices one level apart.

This is an important property of BFS trees.

Theorem 24. In a connected graph G with a breadth-first search tree T each edge
e ∈ E(G) connects vertices that are at most one level apart.

Proof. let e = (u, v) ∈ E(G) and without loss of generality let u join the tree
before v, then by Theorem 23 we have

level(u) ≤ level(v).

Case 1: v is not in the tree when u is active. Then v and e are added to the
growing tree and

level(v) = level(u) + 1.

In this case the edge e is in the tree and shows that tree edges join
vertices exactly one level apart.

Case 2: v is in the tree when u is active. Let pr(v) = w which means

level(v) = level(w) + 1.

Since v is in the tree when u is active w was added to the tree before
u and by Theorem 23

level(w) ≤ level(u).

Thus
level(u) ≤ level(v) = level(w) + 1 ≤ level(u) + 1

equivalently
level(u) ≤ level(v) ≤ level(u) + 1

83

Thus two adjacent inG vertices u and v are at most one level apart in T .

Note that in the above result the adjacency comes from the whole graph
where as the level information is based on the tree. In particular, non-tree
edges join vertices at most one level apart, that is non-tree edges join vertices
either at the same level or exactly one level apart. The above property can
be applied to obtain various information about the graph itself.

Theorem 25. A connected graph G with BFS tree T has an odd cycle if and only
if there is a non-tree edge that joins vertices at the same level

Proof. Suppose the graph has a non-tree edge e that joins vertices at the
same level. Follow the path to the first common ancestor from both vertices
incident with the edge e. Along with e the result is an odd cycle.

Suppose all non-tree edges join vertices at different levels. By Theo-
rem 24 the levels are exactly one level apart in this case. Then the set of
vertices at even level and the set of vertices of odd level form a bipartition
of the graph. Thus the graph is bipartite and by Theorem 21 it contains no
odd cycle.

Theorem 26. The length of a shortest path from u to v in a connected graph G
equals the level of v in any BFS tree of G with u as root

Proof. Self study problem.

84

	Graph theory basics
	Graphs, adjacency and incidence
	Example Gex1
	Example Gex2
	Adjacency and incidence
	Example Gex3
	Example WG
	Example S(n,k)
	Example On
	Example RPG(8,15)
	Notation

	Simple finite graphs
	Degree
	Petersen graph
	A 3-regular example
	A 4-regular example

	Handshake lemma
	Graph representation
	Adjacency list
	Adjacency matrix
	Incidence matrix
	Relations between representations

	Graph isomorphism
	Walks, paths and cycles
	Special graphs
	Empty graph En
	Complete graph Kn
	Bipartite graphs
	Path Pn
	Cycle Cn

	Common graph measures
	Subgraphs
	Connected graphs
	Bridges and cut vertices

	Trees
	Spanning trees
	BFS
	Example: connected graph
	Example: disconnected graph
	Properties of BFS trees

