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Chapter 1

Linear Systems

1.1 Linearity and linear equations

Definition 1 (linear combination). A linear combination of z; ... z,, is an expres-
sion of the form
a1T1 + 2T+ AnTn,

where x;’s are indeterminates or variables; and a;’s are coefficients and belong to a
field K.

Remark: In the above definition and in the remainder of these notes the field
K will be mostly either the real numbers R or the complex numbers C, but in
general any field will do, except in special cases when C is required. We will
strive to make a note whenever C is required.

Examples:
linear non-linear
rH+y+z tan(z) +  + (—1)z
2ix+y+(—1)z x+yr+ (—1)z
r1+ (1 =Ty + 1z 2?2 +sin(y)r + (—1)z
(f04 wdx) x1 + (1 = Ti)zg + v/—1z3 | sin(x) + sin(y) + sin(z)

Remark: often Oz is omitted. Likewise instead of (—1)z one writes —z. There
is a difference between linear in x and linear in sin z.

Definition 2 (linear equation). A linear equation in the set of variables X, where
without loss of generality X = {x1 ...z, } is an equation of the form

ai1xr1 + asxe + - - - apxy, = b.

The value b is the constant of the linear equation and similar to the coefficients it
belongs to K .



Notation: when referring to the linear equation
ai1r1 + asxes + -+ ancy, = b

we will use the summation symbol ) and write

n
E a;r; = b.
=1

The limits of the summation can be any two numbers (negatives are fine for
example). We sum only integers indices.

Examples: For a set of variable X = {1, 23, 23,24} we have

linear equations not linear equations
Ty +4rs +x3+204=—-8 | Jr1+ 32+ 74 =3
2014+ 3x2 + 3 =5 T1xo +To+ x4 =6

Definition 3 (homogeneous equation). An equation y ., a;x; = b is called ho-
mogeneous if the constant of the equation i.e., b is zero, that is b = 0.

Examples:

non-homogeneous linear equations | homogeneous linear equations
r1 + 4w + x3 + 224 = —8 1 +4xs + 23+ 224 =0
201 + 310+ 23 =5 201 + 322+ 23 =0

1.1.1 Solutions to a linear equation

Definition 4 (solution of an equation). An n-tuple (s1,...,s,) € K" isa solution'
to the linear equation

a1r1 + asxo + -+ apr, =b <= a181 +asss +---+a,8, =b

If the set of solution is empty, then the equation is said to have no solution or is incon-
sistent. If it has at least one solution it is said to be consistent.

Observe that the second equation is concerned with numbers only; there
are no indeterminates.

Examples: (1,0, —3) is solutions to 4x1 + 2x2 + 23 = 1, but (—3,0,1) isnot a
solution.

Example: The values (—2,5,0) and (0,4, —1) are both solutions to =1 + =2 +
x3 = 3, (1,5,0) is not a solution to x; + x5 + 23 = 3. The set of all solutions is
T3 = 81,72 = so and x1 = 3 — 51 — so where s1, 59 € K.

1Order is important



Example: the solution to z1 + x2 + z3 = 1 is the set
{(1 =51 — 89,51,82) | 51,80 € K} C K3
Theorem 1. Let [ be the linear equation
airy +asxs + -+ apx, =0

1. if at least one a; is non-zero then the solution set is

b—(aisy+ -+ ai—18i-1 + Qiy1541 + - + ansy)
S = S1y---,8i—1, o
K3

‘sla-~-75i71;8i+1a---7sn eK}v

2. ifall a;’s are zero and

(a) the constant b is zero then the solution set is
{(s1,---+8n,) | 81,---,80 EK};

(b) and lastly if all a;’s are zero and the constant b is non-zero then the solution
set is empty.

Proof. Suppose a; # 0 and let 51, ..., s,, be a solution to the linear equation, by
definition
a181 + asso + -+ aps, =0b

rearranging
. — b—(a181+ - +ai—18i—1 + @iy18it1 + - + AnSn)
[ a; .
Thus s1,...,s, € S. Take an element from the set S and consider

a1sy + -+ ai—18i-1
b—(a181+ -+ ai—18i—1 + @iy18it1 + - + @nSn)
a;

+ai

FTAi18i41 + 0+ ApSy

= a181 + -+ Ai—18i—1 T Gi+18i41 T - - T AnSn
+b—(a1s1 + -+ @i-18i-1 + Ait18i41 + -+ AnSn)
=

Thus every solution belongs to the set S and every element of the set S is a
solution to the linear equation concluding this part of the argument.

y Sitls- .-



Suppose now all a;’s are zero thatis a; = 0, a = 0...a, = 0. For any
n-tuple (s1,. .., s,) we have

0181+"'+ansn:081—’_'“—’_08’”«:0(81—’_”.—’_8”):0

Therefore if b = 0 every n-tuple is a solution. If b # 0 the equation has no
solution, concluding the argument.
O

Example: the solution to 0z; + 225 4+ z3 = 3 is the set

3 —
{(Sl, 282,82> S1,82€K}§K3.

The description of the solution set is not unique. The same set — the set of
solution for this equation can also be given as

{(t1,t2,3 — 2t2) | t1,t2 € K} CK?

Remark. Typically in case there is a non-zero coefficient the solution set is
described using the smallest index ¢ for which «; is non-zero. For the above ex-
ample it means the solution set is described with the former description instead
of the latter.

Example: the solution to 0z + O0ze = 01is {(s1,2) | $1,52 € K} C K2

Example: the solution to 0z1 + 0z2 + Oxg + 0z4 = 2 is the empty set ) C K*
in other words it has no solution, in other words the equation is inconsistent.

Example: the solution to 2z; = 6 is the set with single element 3 € K*. It is
sometimes called singleton, the set can be denoted by {3} C K'.

1.2 System of linear equations

Definition 5 (system of linear equations). A system of linear equation is a set of

linear equations in the same set of variables X = {x1,...,zn}:
anzi +azs + -+ a1y = b
a1+ azrs + -+ apry, = by
Am1T1 + Ama®a + + AmpTn = by
Definition 6 (solution to a system of linear equations). An n-tuple (s1,...,s,) €

K™ is a solution to a linear system of equations if it is solution for each equation.



Remark: The above definition implies that the set of solutions to a system of
linear equations is the intersection of the sets of solutions for each equation in
the system of linear equations.

Example: (z1,z2) = (7,8) is a solution to the system

1021 + 720 = 126
ox1 + 1lze = 123

Example: (—2,5,0) and (0,4, —1) are both solutions to

1 +r04+23 = 3
201+ a9+ 3x3 = 1

Example: For arbitrary values s; and s,

TG = Sy —s81+1
To = 89+ 81+ 2
r3 = S1
Ty = 82
is a solution to
T — 29 +3x3+x4 = -3
200 —x9o+3r3—2x4 = 0

We can write the set as
{(52—S1+1782+81+2,S1,82)|31,$2 EK}QK4

In some cases we may end up with a set of solutions that is empty. For example
the system
Ty —To+3r3+24 = 3
T — X2+ 3x3+ x4 =
has no solution (the solution set is empty). In this case we say the system is
inconsistent. Observe that in the above system of linear equation each equation
on its own is consistent but the system of linear equations has no solution. The
reason is that the equations have solutions
S1 = {(34 81— 3s2 + s3, 581, 82, S3) |81,$2,S3€K}QK4
So = {(t1 —3ta +t3,t1, 12, 83) | t1,ta,t3 € K} CK*

respectively, but S; N Sy = 0.

Definition 7. [inconsistent consitent] A system of linear equations is inconsistent if
it has no solutions; otherwise it is consistent.



Example: here is another inconsistent system of linear equations.

2x1 +2x9 +3x3 4314 ‘g = 3
r3 +2r4 x5 = =2

Txy x5 = 1

—x5 +2x¢ = 0

0 = 1

Definition 8 (homogeneous system of equations). A system of equations is called
homogeneous if each equation is homogeneous.

Every system of linear equations S in variables X = {z1,...,z,}
anzi +ars + -+ a1, = b
a21®1 + @222 + -+ ATy = bo
Am1T1 + Ama®2 + -+ ApnTn = by

has a corresponding homogeneous system of linear equation, which is in the
same set of variable and obtained by changing the constant of every equation
to zero namely,

a11r1 +apxa + - +apr, = 0
a21T1 + a2%2 + -+ agpt, = 0
121 + 2T + - + AmpTy = 0.

Example: For the non-homogeneous system of linear equations.

2x1 +2x9 +3x3 +314 +x = 3
r3 +2r4 x5 = =2

Try x5 = 1

—X5 +2(E6 = 0

0 = 1

the corresponding homogeneous system of linear equations is

2x1 +2x9 +3x3 +314 42 = 0
r3 +2r4 x5 = 0

Try x5 = 0

—x5 +2x¢ = 0

0 = 0

Remark: anyhomogeneous system of linear equations and its corresponding
homogeneous system of linear equations are the same.



1.3 Equivalent systems

Definition 9. Two systems of equations Sy and Sy are equivalent if they have the
same set of solutions.

Example: For example

T — 29 +3x3+x4 = -3 T, — 29+ 33 +x4 = —3
Slt 1’1—2%24—3%3-’-%4 = -3 5 SQZ 21’1—1’2+3£L’3—1’4 = 0
200 —xo+3r3—2x4 = 0 201 —x9+3x3—24 = 0
and
201 —x9+3x3—x4 = 0
Ss T, — 29+ 3x3+x4 = —3
200 —x9+3r3—24 = 0

have the same set of solutions:

ry = S9—81+1
Tz = S2+81+2
r3 = 81
Ty = S2

Here 51,5, € K. The following system while closely related is not equivalent
to the above system of linear equations as it has a unique solution:

T — 29 +3x3+2x4 = -3
2x1 — w2 +3w3 — 14 =
r3 =
Ty =
given by the singleton
(1,2,0,0)
Consider the following two systems of linear equations:
S T, —2x9+3r3+24 = -3
) 4wy —5x9+923+x4 = —6
and
g .4 1= 2p+3ystyn = 3
YOl 4dyr —5y2+9ys +ys = —6

These are trivially equivalent as S, is in variables {z1, 22, z3, 24} and S, is in
{y1,Y2,ys3,ys}. Thus as far as set of solutions is concerned (which is what we
are interested in), is carried by the coefficients and the constants of each equa-
tion; the variables’ labels are irrelevant. We will therefore represent system of
linear equations via matrices.

10



1.4 Matrices and vectors
Definition 10 (matrix). Anm x nmatrix A = {a;;},;<,, 1< <, 15 a rectangular

array of numbers with m rows and n columns. Each number in the matrix is called an
entry.

Examples: The matrix M; is a 3 x 5, the matrix Ms is a 5 x 3 matrix:

8 10 —6
41 0 -1 9 2 4 0
M, = 5 2 1 7 1 My = 0 2 10
-3 0 5 8§ 1 -2 14 16
18 2 2
The following is not a matrix:
1 2 3 4 5
1 2 3
1 2 3 4 5
1 2 3
Definition 11 (equal matrices). Let
A={aihcicmicicn M3 B={bij}iciciiq<

be two matrices. We say that A = Bifm =r,n=pandforalll1 <i<m,1<j<mn
we have that a;; = b;;

Example: The matrix M; is equal to itself but it is not equal to the matrix
given by

41 0 -1 9 0
5 2 1 7 1 0
-3 05 8 10

Definition 12 (square matrix). An m X n matrix is called square of order m if
m=n.

Example: The matrix M3 isa 3 x 3,1i.e. a square matrix of order three:
1 0 -1

My=|2 1 7

05 8

Definition 13 (row vector). An 1 x n matrix is called a row vector. The entries in
a vector are also called components.

11



Example: a row vector with five components
7= (4a 17 07 717 9)

Definition 14 (column vector). An m x 1 matrix is called a column vector.’

Example: a column vector with five components

ol
I
© = O = o

Remark: c# 7.

1.5 Representations of system of linear equations

Definition 15 (coefficient matrix and augmented matrix of a system of linear

equations). Let S be a system of linear equations in {x1, ..., x,} given by
anz1  taprz 4o Fapzn, = b
az1®1  Faxpry +-0 tazr, = by
Am1T1  +Am2T2 +0 FmpTn = b

Let A be the m x n matrix with entry ij equal a,; and b is a column vector with ith
component b;. The matrix A is called the (coefficient) matrix of the system. The
augmented matrix of the system (A|b) is the m x (n + 1) matrix with ij entry equal
ai; if § < nand b; otherwise. That is

a11 aiz2 - Q1n a11 a2 - ain | b1

a1 G2 -+ G2n az1 G2 - G2n | b2
A= , (Alb) =

Am1 Am2 tee Amn am1 am?2 T Amn bm

Example: For the system of linear equations

Iy +3(L’2 +3$3 +25U4 +r5 = 7
3xr1 +9xy —6x3 +4xy 435 = -7
2x1 +6xs —4dxs +2x4 4225 = —4

20ften instead of a column vector we will say only a vector.

12



the matrix of the system is

13 3 21
39 -6 4 3
2 6 —4 2 2
and its augmented matrix is
13 3 2 1| 7
3 9 -6 4 3|7
2 6 -4 2 2|4

Example: For the system of linear equations

2y1 +6y2 —4dys +2ys +2ys = -2
Y4 = -1
Sy  +Ya = 9
the matrix is
2 6 —4 2 2
0 0 01 0
0 0 5 1 0

the augmented matrix is

2 6 —4 2 2| -2
0 0 01 0]-1
0 0 5 1 0 9
Example: For the system of linear equations
4
?1’1 +6£172+9£L’3 =0
41’2 - 12‘%3 =0
12171 = 0
0 = 1
the matrix of the system is
4
= 6 9
0 4 -12
12 0 0
0 0 0
and the augmented matrix is
26 9]0
0 4 -1210
12 0 0]0
0 0 0|1

13



Definition 16 (vector representation of a system of linear equations). Lef S be a

system of linear equations in {x1, ..., x,} given by
anry  tapry +-o tatn = b
an1x1  tagpry 4o FamIn = by
Am1T1  +amaT2 +- FOmpTn = bm

The vector representation of the system is

ai a2 a1n by

a21 @22 a2n by
1+ . Tyt -+ . Tp =

Am1 Am2 Amn bm

Example: For the system

T +3£172 +3£E3 +2I4 +$5 = 7
3x1 +9xy —6x3 +4xy +3x5 = -7
2x1 +6xs —4dxs +2x4 4225 = —4

the corresponding vector representation is

1 3 3 2 1 7
3 xr1 + 9 To + —6 xr3 + 4 T4 + 3 Ty = -7
2 6 —4 2 2 —4

Example: For the system of linear equations

4

?.’171 +6x9+923 = 0

4rog — 1223 = 0

1227, = 0

0 1

the vector form is

2 6 9 0
0 4 —12 0
12 |t o | %27 o |* = | o
0 0 0 1

1.6 Echelon form and back substitution

Definition 17 (leading (basic) variable). In each row of a system, the first variable
with a nonzero coefficient is the row’s leading (basic) variable.

14



Definition 18 (Echelon form). A system is in Echelon form if each leading variable
is to the right of the leading variable in the row above it, except for the leading variable
in the first row, and any all-zero rows are at the bottom.

Note: The above form we well call Upper Triangular form as many software
tools call Echelon form the Reduced Echelon form which will be discussed a
bit later in this text.

Example: The system of linear equations

1+ 3x9 4+ 3x3 + 204 =
2$1+61’2+9£E3+5$4 = 3

—x1 — 3x0 + 3x3 =

is not in Echelon Form. It has overall one leading variable namely x;.

Example: The system of linear equations

r1+3x9+3r3+22x4 = 1
3xs+4xy = 1
0 =0

is in Echelon form and z; and x5 are the leading variables. There are no other
leading variables.

Definition 19 (free variable). The non-leading variable in an Echelon form are called
free variables.

In Echelon form a system can be easily solved (say using a computer) us-
ing back-substitution, which is essentially going from the bottom equation and
moving up. At each stage the current set of solutions is intersected with the set
of solution that satisfy the equation that is processed. To solve a single equa-
tion with more that one variable assigns a parameter to each free variable and
represent the leading variable via the assigned parameters. Consider

2x1 +2x9 +3x3 +314 +xg = 3
z3 +2r4 x5 = =2

7$4 +£L‘5 == 1

—X5 +2(E6 = O

From the last equation x5 is leading and ¢ is free variable. We assign z¢ a
parameter, say s; € K. Then

Irs = 281

Te = S1

15



after rewriting the last equation and substituting z¢ with its parameter. We
now move to the equation above the last one. Here z, is leading variable. We
have computed x5 and therefore writing x4 in terms of 5 and x¢ we obtain

1 2
Z = - — =S
4 7 7 1
Irs = 251
g — 81

Moving one equation up with leading variable x5, we now know the values of
x4, T5 and zg. Expressing 3 with the knowledge we have so far we obtain

2 4 16 10
r3 = —2—?4-?81—281:—7—781
12
ry4 = - 751
rs = 281
Te = 81

It remains to look at the first equation. Here we see a new free variable that we
did not encounter so far, namely x5 and x; is leading variable. Just as we did
for 26 we assign a parameter for z; say s2. Note that the values of s, and s; are
independent from each other, so now we have

Zo = S92
16 10
X = —— — =S8
3 7 7 1
1 2
Xz = - — =S8
4 7 7 1
Irs = 251
Tg = S13

and with this information we can also express z; as

2r1 = 3 —2s9 —3(—176 — 17051) — 3(; — 351) — 51
= g _ 289 + §51
7 7
to get the complete set of solutions as
66 29
= g% + 115
T2 = 52
16 10
o= s
1 2
Trg = ? — ?81
T5 = 281
e = S1;



The set of solution can be represented in the so called vector form

66
86 -1
0 1
16
16 0
T+
1
1 0
0 0
0 0

Observe that even though the system given by

201 +x9 + 33+ 304 + 16 + Tx7 + 928 =

5x1 + 9x2 + 5x3 + 324 + T5 + T6 + 727 + 928
3x1 4+ Txo 4+ 33 + Txgy + 5 + 6 4+ 627 + 928
321 + x3 + 3x4 + 26 + Tw7 + 928 =

with augmented matrix

W W ot N
O O
_ W Ut W

= D—“I\D
o owlo

N
+

= oI

W W w
O = = O
— =
N O N
O © © ©

s1] 81,82 €K

I
= W N

=W N

seems simpler in terms constants involved, it is nevertheless harder to solve

compared to

o g S AT 22 192
T G T AT AU S 11 4
, 2B, 6 24 20
P2 IR T 57 T 157 T 157 T T 17
12 22 341 198 250
T AEr T T s T 3T T 57" T T 314
I S LN - 121
T —T5+ —= — —ry = —
* T 157 157°¢ " 31477 T s7 8 314
with augmented matrix
1 28 217 252 192
00 1 0 a2 B M IsE 5%
15 157 314 157 314

Indeed back substitution applies to easily to the second system but no general
procedure can be applied to the first. Consequently, to solve a system of linear
equation we need a method to transform it into an equivalent system that is in

Echelon form.

17



1.7 Row operations as matrix multiplication

Recall the system

1 +3x2 +3x3 +2x4 +xr5s = 7
3x1 +9xy —6x3 +4xy +3x5 = -7
2x1 +6xy —4dx3 +2x4 +225 = 4

From the system we can obtain new equations by combining existing equa-
tions: for example by adding 2 times Equation 1 to Equation 3 we obtain

4z, 412z +2x3 +6x4 +4x5 = 18
by adding negative 2 times Equation 1 to Equation 2 we obtain
1 43z —12x3 +rs = -—21
by adding Equation 2 to itself we obtain
6xy +18ry —12x3 +8x4 +6zx5 = -—14
by adding negative 2 times Equation 2 to Equation 3 we obtain
—4xy —12z9 +8x3 —6x4 —4x5 = 18
by adding negative 2 times Equation 1 to Equation 3 we obtain
—10x3 —2x4 = -10

As a result we obtain a new system of linear equations

4x1 41229  +2x3 +6x4 +4x5 = 18
T +3ry —12x3 +rs = =21
6xy +18x, —12x3 +8x4 +6x5 = -—14
741’1 712I2 +81‘3 761’4 741’5 == 18
—101’3 —21’4 = —-10

We want to encode such transformation so that there is an easy and conve-
nient way to work just with the (augmented) matrices of the system of linear
equation. Note that adding negative 2 times Equation 1 to Equation 3, adding
negative 2 times Equation 1 to Equation 3 and adding negative 2 times Equa-
tion 2 to Equation 3, appear to have the same constants (—2,1) we want to
distinguish between those so rather than saying we add negative two times
Equation 1 to Equation 3 we will say add negative two times Equation 1 to zero
times Equation 2 to one times Equation 3. Then we can distinguish between the
combinations (—2,0,1), (—2,1,0) and (0, —2, 1). Thus we can encode the above
transformation in a matrix

2 0 1

—2 1 0

rowcomb = 0 2 0
0 -2 1

-2 0 1



In matrix rowcomb the first raw indicates that we take 2 times Equation 1, add
zero times Equation 2, add 1 times Equation 3. We can have as many such com-
binations as we want. To identify on which system we apply those operations
we write

2 0 1
-2 1 0 1 3 3 2 1 7
0 2 0 39 -6 4 3|7
0 -2 1 2 6 -4 2 2|4
-2 0 1

The result is a system of linear equation with matrix

4 12 2 6 4 10
1 3 —12 0 1] -21
6 18 —12 8 6| —14
-4 —-12 8§ —6 —4 10
0 0 —-10 -2 0| —18

We call this procedure matrix multiplication:

2 0 1 4 12 2 6 4
-2 1 0 1 3 3 2 1 7 1 3 —12 0 1
0 2 0 39 -6 4 3|7 |= 6 18 —12 8 6
0 -2 1 2 6 -4 2 2|4 -4 -12 8§ —6 —4
-2 0 1 0 0 —-10 -2 0

Observe that the first row of the right side is 2 x Egnl +0 x Egn2 + 1 x Eqn3
in particular it is expressed as a linear combination of the rows the augmented
matrix of the original system of linear equations. The restriction that we place
when multiplying matrices AB = C' in that case is that we require that the
number of columns of A equals the number of rows of B. In other words we
can obtain as many new equations as we want (number of rows of A is the
same as the number of rows of C'). We may have as many variables as we want
(number of columns of B equals number of columns of C). The result C has its
rows represented as linear combinations of the rows of B.

1.7.1 Matrix operations

Previously, we considered row operations and worked towards representing
the combinations of equations via matrices. We required multiplication of an
equation with a scalar (recall an equation corresponds to a row in the aug-
mented matrix, thus it is simply a row vector). We needed addition of two
equations. And lastly we multiplied matrices to obtain the result. Multiplying
equation with a scalar requires that each coefficient is multiplied by the said
scalar. Generalized to matrices we get

Definition 20 (scalar matrix multiplication). Let A = {a;;} be a m x n matrix
and c be a constant. We define cA as the m x n with entries {ca;;} for 1 < i < mand
1<j<n
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Example:

2 0 1 4 0 2

-2 1 0 —4 2 0

2 0 2 0 | = 0 4 0
0 -2 1 0 —4 2

-2 0 1 —4 0 2

When adding two equations we added constants in front of variables, which
in vector forms is simple component-wise addition (note the row vectors must
have the same number of components). Generalizing to matrix addition we get

Definition 21 (matrix addition). Let A = {a;;} and B = {b;;} be a two m x n
matrices. Define A+ B as the m x n matrix with entries {a;; + b;;} for 1 <i <m
and 1 < j <n.

Example:
1 3 3 2 3 0 3 1 4 3 6 3
39 6 4]+ 81 -6 0]=|-5 10 —-12 4
2 6 —4 2 4 1 2 5 6 7 -2 7

Lastly, from the way we wrote the transformation via the augmented ma-
trices we can define

Definition 22 (matrix multiplication). Let

ail a12 e A1n b11 blg N blk

a1 a22 e agn b21 b22 e bgk
A= B= ,

aml Am2 ... (mn bnl bn2 o bnk

Define C = AB by ¢y, = Z Ayibiy-
i=1

Example:
3 -8
13 3 21 0 1 16 —26
39 040 3 -6 | =13 -15
2 3 -4 2 4 1 0 4 -1
2 -3

Remark: we emphasize the difference between scalar multiplication and ma-
trix multiplication: if A is a n x m matrix with n > 1 then oA is defined for any
scalar « but [a] A is not defined, where o] denotes the 1 x 1 matrix with entry
a.
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Definition 23 (linear combination of vectors). A linear combination of vectors
U1 ... Uy is an expression of the form

a1¥1 + agl + -+ + Ay Up,
where a;’s are coefficients and belong to K.

In matrix multiplication AB = C we have that rows of C are linear combi-

nations of rows of B; also columns of C are linear combinations of columns of
A.

Example: consider the matrix multiplication

1 -3

0 5 —2 -1 -10 17
-1 2 3 0 j _; =1 -8 1
2 -4 2 4 5 _3 16 —30

for the second column of the result we have

0 5 -2 -1 17
(=3)[ -1 | +2 2 | +(-2) 3 | +(-3) 0| = 1
2 —4 2 4 —-30

for the third row of the result we have

2(1, =3)+(—4)(-2,2)+2(-1, —2) +4(2, —3) = (16, —30)

Matrix representation of SLE: From the vector form of a system of linear
equation we can write its matrix form AZ = b where A is the coefficient matrix
of the system.

Example: for the system of lineary equation

1 +3x9+3x3+22x4 = -3
31’1 + 9%2 — 6(E3 + 4.%4
21‘1 +6I2 741334’2584 =

“ which has vector form

1 3 3 2 -3
3 T+ 9 To + —6 rs + 4 Ty = 2
2 6 —4 2 )

13 3 2 1 -3

3 9 -6 4 RCT 9

2 6 —4 2 T3 5
Ty
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and very often the vector of variables is not written in a long i.e. the matrix
representation is
13 3 2 -3
39 —6 4 |¥= 2
2 6 -4 2 )

Properties. Scalar matrix multiplication and matrix matrix addition has some
similarities with the usual addition and multiplication with real numbers. In
terms of matrix addition, whenever two matrices can be added the following
are satisfied:

©« A+B=B+A
« A+ (B+C)=(A+B)+C

Furthermore there is a zero matrix 0,,x,,, Wwhose entries are all zeroes such that
A+ Omxn = Opxn + A = A. Similarly, for every matrix A there is a matrix B
such that A + B = 0,,x». Typically B is denoted via —A.

Note: Itis important to observe that to add two matrices they must have the
same number of rows and columns. However, to multiply two matrices the
number of columns of the first matrix must equal the number of rows of the
second matrix. So it is possible to add two 2 x 5 matrices, but it is not possible
to multiply them. It is possible to multiply a 2 x 5 by a 5 x 2 matrix. In that
sense it is not always possible to multiply a matrix A with itself (e.g., if Ais a
2 x 5 matrix). However it is possible to multiply A by its transpose.

Definition 24 (transpose). Let A = {a;;} be a m x n matrix. The transpose of A
denoted by AT is a n x m matrix {al }, where al, = a,, forall 1 < u < nand

1<v<m.

Example: the matrix

N W
w o w
= O W
(GRS )
=~ O =

has transpose

— N W o =
SO O O W
|
N

Special class of matrices: the following definitions are often encountered in
practice:

Definition 25 (square matrix). An n x n matrix is called a square matrix. Often it
is called square matrix of order n.
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Example: a square matrix of order three

24 38 7
38 106 41
7 41 49

and order five
14 36 -5 18 9

36 99 -3 48 15
-5 -3 25 -2 —-13
18 48 -2 24 10

9 15 —-13 10 17

Definition 26 (lower triangular matrix). Let A = {a;;} be an n x n matrix. If for
all 1 <4 < j < nwehave that a;; = 0 then A is called a lower triangular matrix.

In other words all elements above the diagonal are all zero.

Example:
2 00 0
1 2 0 0
4 -5 2 0
3 01 -1

Definition 27 (upper triangular matrix). Let A = {a;;} be an n x n matrix. If for
all 1 < j <4 < nwe have that a;; = 0 then A is called a upper triangular matrix.

In other words all elements below the diagonal are all zero.

Example:
2 -1 31
0 310
0 0 0 2
0 0 0 7

Definition 28 (diagonal matrix). Let A = {a;;} be an n x n matrix. If A is both
lower and upper triangular then A is called a diagonal matrix.

Example:
-3 0 0 0
0 0 0O
0010
0 0 0 2

Definition 29 (scalar matrix). Let A = {a;;} be an n x n matrix. If A is diagonal
and all its diagonal entries are equal then A is called a scalar matrix.
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Example:

-2 0 0 0 O
0 -2 0o 0 0
0o 0 -2 0 O
0O 0 0 -2 0
o 0 0 0 =2

Definition 30 (identity matrix). The scalar matrix with diagonal entries equal to 1
is called the identity matrix and denoted by I.

Example:

S O O
o O = O
o= O O
— o o o

Properties of matrix multiplication:

* AB # BA, in fact one of the multiplications may not even exist! Matrix
multiplication is not commutative in general.

A(BC) = (AB)C

e A(B+ C) = AB + AC —multiplication is left distributive over addition.
* (B4+C)D = BD+CD —multiplication is right distributive over addition.
o Al = IA = A-left and right I may not be the same

With real numbers if ab = 0 then it must be the case that a = 0 or b = 0.
However with matrices this is not the case. If for a non-zero square matrix A
there exists a non-zero matrix B such that AB = 0,,,x,, then A is called a zero
divisor.

10 0 0 0 0
Example Let A = 0 O)’B<1 0>ther1AB<O 0).BothA

and B happen to be zero divisors.

Example

2 1 3 2 0 0
(30) () (i)
Both A and B are zero divisors.

Definition 31 (inverse and invertible matrix). A square matrix A is called invert-
ible if there is matrix B such that BA = I. The matrix B is called the inverse of A
and denoted by A~
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Example: the inverse of matrix

is matrix

Theorem 2. If AB = I then BA = 1.

Proof. Assume by contradiction that BA # I. Then multiplying both sides on
the right by B we obtain (BA)B # IB. The right hand side due to associa-
tivity of matrix multiplication is B(AB) and since AB = I we have (BA)B =
B(AB) = BI = B. On the left hand side we have IB = B thus we obtain
B # B a contradiction. Therefore BA = I. O

Theorem 3. If A is invertible matrix then the inverse of A is unique.

Proof. Suppose AC = I and AD = I. By Theorem 2 we have AD = DA = I.
Since D is a right inverse of A, then D is also a left inverse of A. Left and right
inverses are equal thus the right inverse of A which is C' equals the left inverse
which is D, so C = D completing the argument.

D = DI = D(AC) = (DA)C = IC = C
O

Theorem 4. If for a matrix A there exists matrices B and C such that AB = I and
AC = 0 then C = 0, where 0 is the zero matrix.

Proof. If AB = I then by Theorem 2 BA = 1I.
AC = Opxr = B(AC) = BOgxr = (BA)C = Opxir = IC = Opx = C = O xk

O

1.8 Gauss’ method

We can solve a system of linear equations using back-substitution, but only if
the system is in Echelon form. The next theorem gives us a way to transform a
system of linear equations into Echelon form.

Theorem 5. [Gauss’ method] If a linear system S is changed to another S’ by one of
these operations:

1. an equation is swapped with another
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2. an equation has both sides multiplied by a non-zero constant

3. an equation is replaced by the sum of itself and a multiple of another
then the two system of equations have the same set of solutions.
Proof. 1. Exercise

2. Homework question

3. We have to show two the set of solution for S is the same as the set of
solution for S’. To show equality of two sets we show that every element
from the first set is also an element of the second set and then show that
every element of the second set is an element of the first set.

S C §': Suppose s1, 2, - . ., 8, is a solution to S then
1181 +aipsz  +--- Faips, = b
a2181 +agesy +--- +as, = b
. )
Am181 +ama2S2  +--- +amnsSn = bm

and therefore in S’ for each k # j we have

ak151 + k252 + -+ + AknSn = b
It remains to verify that

a}lsl + a9252 44 a}nsn = b;-. (1.1)
Without loss of generality suppose S’ was obtained from S by adding ¢
times equation ¢ to equation j in S. That is a;-i =aj; +cay; for1 <i<mn,
and b; = b; + cb;. For Equation 1.1 we then have

ajis1+ ajesa + A a0 = (aj +can)sy + (a2 + cag)sy + - -

<o+ (ajn + cam)sn

= @181 t @282+ -+ AjnsSn

“+ca;181 + caipsSe + - - - + CappSn

= Q5181 + @252+ -+ Ajnsy

+e(aps1 + aws2 + - - + amSn)

= b+ ch =1,

Thus s1, ..., s, is also a solution to S’.
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S D 5" Conversely, suppose s}, s, ..., s}, is a solution to S’ then

/ / /
a1187 +aiesy +--- taps, = b
/. 1ot 1o . oo _ /
S| ap sy tajsy;  + +aj,s, = b;
/ / ! — b
amlsl +am252 +--- +amnsn - m

and therefore in S for each k # j we have
k151 + aroSo + -+ + app Sy = bg.
It remains to verify that
@151 + @252 + -+ + ajnsy = bj. (1.2)

Without loss of generality suppose S’ was obtained from S by adding ¢
times equation ¢ to equation j in S. That is a;i =a;;+cay forl <i<nor

aj; = a;-i —cay;, and b;- = bj +cbpk implying b; = b; —cb;. For Equation 1.2

we then have

! ! / _ / / / /
a;187 + ajosy + -+ ajns, = (aj1 —cap)sy + (aj2 — ca2) sy +

+eee (a;n - Catn)sln

. ro ’o ro
= ;151 QoS+ a5S,

/ / /
—Cat1S] — CAtaSy — =+ — CAtn Sy,

_ ro 1o ro
= a;181 + A58 + -+ a;,8,
/ / /
—c(apn sy + apsy + -+ + ams,,)
= b; —cby = ;.

Thus s, ..., s}, is also a solution to S.

Therefore S and S’ have the same set of solutions.
O

Definition 32 (elementary row operations). The elementary row operations,
(also row operations, Gaussian operations) are

1. row swapping
2. rescaling (multiplication with a non-zero constant)

3. row combinations (adding a multiple of another row)
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Reducing to Echelon form: a system of linear equations in Echelon form is
easy to solve, by the above mentioned back substitution. One procedure to ob-
tain an equivalent system of linear equations to ensure by swapping equation
that the leading variable of the first equation call it z is not to the right of any
leading variable of the remaining equations. Then by adding suitable multi-
ples of the first equation to the other equations so that the coefficient in front
of x in the all equations except the first one are zero. The same procedure is
recursively applied to the system linear equation that is obtained by removing
the first equation. Until a single equation remains at which stage the procedure
terminates. It is important to note that all the operations that were performed
are elementary row operations. Thus by Theorem 5 all the system of equations
are equivalent (that is they have the same set of solutions).

1.8.1 Gauss’ method example:

recall the system

T1+3xs+3x3+2x4+25 = 7
3x1 + 929 — 63+ 424 + 325 = —7
2x1 + 620 —4x3 4+ 224 + 2205 = —4

with augmented matrix

1 3 3 2 1 7
39 -6 4 3|7
2 6 -4 2 2|4

Step 1: add negative three times equation one to equation two to get

1 +3x0+3x3+2x4+25 = 7
7151’3721’4 = =28
201 + 629 —4x3 4+ 224 + 2205 = —4
represented as matrix multiplication
13 3 21 7 100 13 3 2 1] 7
0 0 —-15 -2 0]—-28 = -3 1 0 3 9 -6 4 3|7
2 6 —4 2 2| -4 0 01 2 6 -4 2 2|4

Step 2: add negative two times equation one to equation three to get

1+ 32 +3x3+2x4+25 = 7
715.%3 - 21‘4 = 28
—10$3 — 2334 = -18
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represented as matrix multiplication
1 3 3 2 1 7 3 2 1 7

1 0 0 13
0 0 =15 -2 0] —-28 = 01 0 0 0 =15 -2 0] —-28
0 0 -10 -2 0] —18 -2 0 1 2 6 -4 2 2| -4

-2
Step 3: add 3 times equation two to equation three to get

Ty +3r2+3x3+2x4+2x5 = 7
—15553 — 25(74 = =28

2 2

2y, = =2

37 3

represented as matrix multiplication

13 3 21| 7 1 00 13 3 21| 7
00 —-15 -2 0/-281] = [0 10 00 —15 —2 0|—28
00 0 -2 1

0 -2 0| 2 0 0 —10 -2 0] -18

3 3

The system is in Echelon form and can be solved using back substitution. The
solution set is

r, = 3 — 3t1 — tg
T2 = tl
r3 = 2
Ty = -1
Iy = t2
in vector form

3 -3 -1

0 1 0

2 + 0 t1 + 0 t2|t1,t2€K

-1 0 0
0 0 1

The above Echelon form is suitable for back substitution (i.e. it has a “inverted
stair” shape), but we can continue with elementary row operations to obtain
the Reduced Echelon form which allows for even easier way to identify solution
(in many ways finding solution with back substitution involves in a convoluted
way getting the Reduced Echelon form).
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Step 4: scale equation three by _73 to get

Ty +3r2+3x3+2x4+2x5 = 7
—151}3 — 2£C4 = —-28
Ty = —1

represented as matrix multiplication

13 3 21| 7 10 0 13 3 21
00 -15 -2 0[-28| = [0 1 0 00 —-15 -2 0
00 0 10| -1 00 -2 00 0 -20

Step 5: add two times equation three to equation two to get

T1+3r2+3x3+2x4+2x5 = 7
—15z3 = -30
Ty = —1

represented as matrix multiplication

1 3 3 21 7 1 00 1 3 3 21 7
0 0 =15 0 0]-30 = 01 2 0 0 —-15 -2 0| -28
0 0 01 0| -1 0 01 0 0 0 1 0] —1

-1
Step 6: scale equation two by 5 to get

1+ 3x9 + 323 + 204+ x5 =

r3 = 2
zg = -1
represented as matrix multiplication
133 2 1| 7 1 00 13 3 2 1 7
001 00| 2 = 0 —% 0 0 0 =15 0 0]-30
0001 0]-1 0 01 00 0 1 0| -1

Step 7: add negative three times equation two to equation one to get

Ty + 39 + 224 + x5
T3

I
[N

334:—1

30

Wi G0 ~3



represented as matrix multiplication

1 3 0 2 1 1 1 -3 0 1 3 3 21 7
001 00| 2 = 0 1 0 00100 2
0001 0|1 0 01 0001 0]-1
Step 8: add negative two times equation three to equation one to get
1+ 3z +2x5 =
r3 =
Ty = — 1
represented as matrix multiplication
1 3 0 0 1 3 1 0 -2 13 0 21 1
001 00 2 = 0 1 0 0 01 0O 2
00 01 0|-1 0 0 1 0001 0f-1

Reduced Echelon form The above equation is in Reduced Echelon form, mean-
ing that

1. the system is in Echelon form;
2. the coefficients in front of leading variables is each one;
3. every leading variable appears in exactly one equation.

With the Reduced Echelon form performing Back Substitution requires no ex-
tra computation. Many software tool that provide routines for Gaussian elim-
ination when called upon produce in fact the Reduced Echelon Form. Some
linear algebra texts identify the Reduced Echelon form with the Echelon form.
From now on when we say Echelon form we will mean Reduced Echelon form.
In rare cases when the inverted stair shape is asked for or needed it will be
made explicit.

As said with the Reduced Echelon form it is easier to identify the solution.
It is also useful when you need to solve multiple SLEs with the same coefficient
matrix.

1.8.2 Inconsistent system of linear equation

Consider the following system of linear equations

T, 4+ 3Ty +3x3 +2x4 =
2%1 + 61’2 + 91’3 + 5£U4
—x1 — 3T0 + 3x3 =

I
N W =
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with augmented matrix

=N =
w o W
w o w
[awN G2 B (V)
N W =

Step 1: add —2 times equation one to equation two

1+ 3xs+3x3+2x4 = 1
31’3 +x4 =
—x1 —3r2+ 33 = 2

represented as matrix multiplication

1 3 3 21 1 00 13 3 2]1
0 0 3 1]1 = -2 10 2 6 9 5|3
-1 -3 3 0|2 0 0 1 -1 -3 3 0|2
Step 2: add 1 times equation one to equation three
1 +3x9+3r3+22x4 = 1
3xs+x4 = 1
6xz3 +2x4 = 3
represented as matrix multiplication
1 3 3 2|1 100 1 3 3 21
00 3 11 = 010 0 0 3 1|1
00 6 2|3 1 01 -1 -3 3 0|2
Step 3: add —2 times equation two to equation three
1 +3x9+3r3+22x4 = 1
3xs+x4 = 1
0 =1
represented as matrix multiplication
1 3 3 2|1 1 00 1 3 3 2|1
00 3 1/1 = 0 1 0 00 3 1/1
0 00 0f1 0 -2 1 0 0 6 2|3
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1
Step 4: scale equation two by 3

I —+ 312 —+ 3$3 —+ 21‘4 = 1
n 1 1
T3+ x4 =
A 3
0 =1
represented as matrix multiplication
1 3 3 2|1 1 00 1 3 3 2|1
001 3|1 = [0 3 0 003 1|1
000 0|1 0 01 0 0 0 0]1
Step 5: add —3 times equation two to equation one
r1+3r2+x4 = 0
1 1
$3+ gfl}4 = §
0 =1
represented as matrix multiplication
1 30 1]0 1 =30 13 3 2|1
1|1 1|1
0 00 0|1 0 01 000 01

The system is in Echelon form. Since the last equation has no solution, the
system of linear equations has no solution, in other words it is inconsistent,
equivalently the solution set is empty or the solutions set equals the empty set
denoted by 0.

The fact that system of linear equations is inconsistent becomes apparent
after Step 3, however, we as mentioned earlier we will be reducing all our
system of linear equations to Reduced Echelon form.

1.8.3 Another consistent example

Consider the set of equations in Section 1.8.2 but with different constants

x1 + 3x2 4+ 313 + 224
2x1 + 6x2 + 923 + by =

—T1 — 3%2 + 3%3 = -5
with augmented matrix
1 3 3 2] 3
2 6 9 5| 5
-1 -3 3 0|5
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Step 1: add —2 times equation one to equation two

T+ 3582 + 3$3 + 21’4 = 3
3rst+xy = -1
—x1—3x9+3x3 = -5

represented as matrix multiplication
1 3 3 2| 3 1 00 1 3 3 2| 3

0 0 3 1|-1 = -2 1 0 2 6 9 5 5

-1 -3 3 0|5 0 0 1 -1 -3 3 0|5

Step 2: add 1 times equation one to equation three

1+ 3x9+3r3+22x4 = 3
3xs+x4 = —1
61‘3 + 21’4 = =2

represented as matrix multiplication

1 3 3 2| 3 1 00 1 3 3 2] 3
003 1|]-1] = (010 0 0 3 1]|-1
0 0 6 2|-2 1 01 -1 -3 3 0|5
Step 3: add —2 times equation two to equation three
T+ 3132 + 3%3 + 21’4 = 3
31’3+I’4 = -1
0 =0
represented as matrix multiplication
1 3 3 2 3 1 0 0 1 3 3 2 3
00 3 1|-1 = 0 10 00 3 1|-1
0000 O 0 -2 1 00 6 2|-2
. 1
Step 4: scale equation two by 3
T+ 31‘2 + 3%3 + 2$4 = 3
+1 1
T3+ x4 = —7
et 3
0 =0
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represented as matrix multiplication

133 2| 3 100 13 3 2| 3
001 /-] =[030 003 1|-1
000 O 0 0 0 1 0 0 0O 0
Step 5: add —3 times equation two to equation one
1+ 3x0+z4 = 4
1 1
$3+§$4 = _g
0 = 0
represented as matrix multiplication
1 30 1| 4 1 -3 0 13 3 2| 3
001 /-2 ] =10 10 001 1|-%
000 0] O 0 01 000 0] O

The system is in Echelon form and can be solved using back substitution.
The solution set is

ry = 4 — 3t1 - tg
To = tl
1 1
I3 = _§ — *152
Tg = tQ
in vector form

4 -3 -1

0 1 0

1 |+ i1 + 1 | t2 ]t €K

—3 0 ~3
0 0 1

1.8.4 System of linear equations with shared matrix

The system of linear equations from Section 1.8.2

T, 4+ 3rs +3x3 +2x4 =
2x1 + 629 + 923 + Sy
—T1 — 3(172 + 3(E3 =
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and the system of linear equations from Section 1.8.3

Ty 4+ 3rs +3x3 +2x4 =
2x1 4+ 629 + 923 + Sy
—T1 — 3$2 + 3%3 = -5

have the same (coefficient) matrix

— N =
w oW
W O W
S Ot N

Reduction to Echelon form does not depend on the constants of the equations
so we can combine the two reductions from the previous sections into single
reduction. It can be efficiently done using augmented matrices, namely we
combine the augmented matrix of the first system of linear equations

[ NI

1
3
-1 - 2

W O W
W ©O© W
(RN )

with the augmented matrix of the second system of linear equations

1 3 3 2 3
2 6 9 5 5
1 -3 3 0]-5

to obtain an augmented matrix for two system of linear equations sharing the
same matrix namely,

1 3 3 2|1 3
2 6 9 5|3 )
-1 -3 3 0|2 =5

To the left of the vertical separator we have the matrix of the system of linear
equation, to its left every column corresponds to a different system of linear
equations whose constants are given by that column.

Step 1: add —2 times equation one to equation two represented as matrix
multiplication

1 33 2|1 3 100 1 33 2|11 3
0O 0 3 1|1 -1 = -2 1 0 2 6 9 5|3 5
-1 -3 3 0|2 -5 0 01 -1 -3 3 0|2 -5
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Step 2: add 1 times equation one to equation three represented as matrix mul-
tiplication

1 3 3 21 3 1 00 1 3 3 2|1 3
00 3 1|1 -1 = 0 1 0 0 0 3 1|1 -1
00 6 2|3 -2 1 01 -1 -3 3 0|2 -5

Step 3: add —2 times equation two to equation three represented as matrix
multiplication

13 3 2|1 3 1 00 133 2|1 3
00 3 1|1 -1 = 0 1 0 00 3 1|1 -1
0 0 0 0]1 0 0 -2 1 0 06 2|3 -2
. 1 . e
Step 4: scale equation two by 3 represented as matrix multiplication
133 2|1 3 1 00 13 3 2|1 3
001 3|2 -2 ] = 1030 003 1|1 -1
0 00 01 0 0 0 1 0 0 0 0]1 0

Step 5: add —3 times equation two to equation one represented as matrix
multiplication

1 30 1|0 4 1 -3 0 1 33 2[1 3
001 3|3 —% = |0 10 001 3|3 —3
000 0|1 0 0 0 1 000 0|1 0

From here we can extract the augmented matrices of the two system of
linear equation. For the first one we have

130 1|0

001 |3

000 01

which corresponds to

z1+3x2+z4 = 0
1 1
T3 + §I4 = g
0 =1

For the second one we have augmented matrix

OO =
oS O W
O = O
O Wl =
O W=



which corresponds to

T+ 3rs+xy = 4
1
I3 —+ 514 = 75

0 = 0

1.8.5 System of linear equations with unique solution

Consider the system of linear equations

—T2+T3 =
21’1 + 3:172 — 2£E3

T1+2r —x3 =

the system of linear equations

—ro+x3 = 0
201 4+ 3x0 — 223 =
T+ 2x9—23 = 0
and the system of linear equations
T2+ T3 =

21’1 + 31’2 — 2(E3 =

1+ 222 —x3 =

They share the same matrix and therefore we will solve them simultane-
ously. Constructing the combined augmented matrix we get

0 -1 111 0 O
2 3 =210 1 O
1 2 -1(0 0 1

Step 1: swap equation one and equation three, given as matrix multiplication

1 2 -1(0 0 1 0 01 0 -1 111 0 0
2 3 =210 1 0 = 01 0 2 3 =210 1 0
0 -1 111 0 O 1 0 0 1 2 -1]10 0 1
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Step 2: add —2 times equation one to equation two, given as matrix multipli-
cation

1 2 =110 0 1 1 00 1 2 -1(0 0 1
0 -1 0j0 1 -2 = -2 1 0 2 3 =210 1 O
0 -1 111 0 0 0 01 0 -1 111 0 0

Step 3: scale equation two by —1, given as matrix multiplication

1 2 -1|0 0 1 1 0 0 1 2 =110 0 1
0 1 0j0 -1 2 = 0 -1 0 0 -1 0j0 1 —
0 —1 1)1 0 0 0 0 1 0 -1 111 0 0

Step 4: add 1 times equation two to equation three, given as matrix multipli-
cation

1 2 —-1]0 0 1 1 0 0 1 2 -11]0 0 1
0 1 0j0 -1 2 = 01 0 0 1 0j0 -1 2
0 0 111 -1 2 01 1 0 -1 111 0 0

Step 5: add 1 times equation three to equation one, given as matrix multipli-
cation

1 2 01 -1 3 1 01 1 2 —-11]0 0 1
01 040 -1 2 = 01 0 0 1 00 -1 2
00 1|1 -1 2 0 0 1 0 0 111 -1 2

Step 6: add —2 times equation two to equation one, given as matrix multipli-
cation

1 0 01 1 -1 1 -2 0 1 2 01 -1 3
01 040 -1 2 = 0 1 0 01 0|0 -1 2
00 1|1 -1 2 0 0 1 00 1|1 -1 2

From here we can extract the augmented matrices of the two system of
linear equation. For the first one we have

1 0 01
01 0|0
0 0 1|1
which corresponds to
xrp = 1
Tro = 0
r3 = 1
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The system is in Echelon form and can be solved using back substitution. In
this particular case the above description coincides with the solution set (which
is a singleton). In vector form

1
0
1
For the second one we have
1 0 0 1
01 0]-1
0 0 1]|-1
which corresponds to
X1 =1
X9 = -1
I3 = -1

The system is in Echelon form and can be solved using back substitution. In
this particular case the above description coincides with the solution set (which
is a singleton). In vector form

1

-1

—1

For the third one we have
1 0 0]-1
01 0 2
0 0 1 2
which corresponds to
r = - 1
o =
T3 =

The system is in Echelon form and can be solved using back substitution. In
this particular case the above description coincides with the solution set (which
is a singleton). In vector form

-1
2
2
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1.8.6 Observations

Parallelization Consider Step 2 from Section 1.8.4

1 33 2|1 3 1 00 1 3 3 2|1 3
00 3 1|1 -1 = 010 0 03 1|1 -1
006 2|3 -2 1 01 -1 -3 3 0|2 -5
We have that
1 3 3 2 1 00 1 3 3 2
0 0 31 = 010 0 0 31
0 0 6 2 1 01 -1 -3 3 0
and
1 3 1 00 1 3
1 -1 = 0 1 0 1 -1
3 -2 1 01 2 =5
In general if a matrix M = (C' | D) is multiplied with a matrix A that is if

you compute AM the computation can be parallelized by computing AM as
(AC | AD).

Associativity Matrix multiplication is associative operation. Consider Step 1
and Step 2 from Section 1.8.5

1 2 -1(0 0 1 0 01 111 0 O
2 3 =210 1 0 = 0 1 0 2 3 =210 1 O
0 -1 111 0 0 1 00 2 110 0 1

and
1 2 =170 0 1 1 0 0 1 2 =170 0 1
0 -1 0]0 1 =2 = -2 1 0 2 3 =210 1 0
0 -1 1/1 0 0 0 0 1 0 -1 111 0 O

Using the previous observation for the right side of the separator (the con-
stants of the three system of linear equations) we have

0 0 1 100 0 0 1 100
01 -2 = -2 1 0 01 0 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1

For the left side of the separator we have

1 2 -1 1 0 0 0 01 0 -1 1
0 -1 0 = -2 1 0 01 0 2 3 -2
0 -1 1 0 0 1 1 0 0 1 2 -1

0 0 1 0 -1 1

= 0 1 — 2 3 -2

10 0 1 2 -1

41



In general if we perform Gaussian operations on multiple system of linear
equations as in the previous section at any stage if we have a combined aug-
mented matrix (U | V) and an initial shared matrix B we have the relations

U=VEB

by applying the above procedure to the first n-steps (i.e. apply associativity
of matrix multiplication to first multiply the Gaussian operations into a single
matrix before applying it to the matrix of the system of linear equations).

Here is another example: consider Step 5 from Section 1.8.5 we have a re-
sulting combined augmented matrix

12 01 -1 3
0 10/0 -1 2
00 1|1 -1 2
given the initial shared matrix
0 -1 1
2 3 =2
1 2 -1
the following relation holds:
1 2 0 1 -1 3 0 -1 1
01 0 )]=10 -1 2 2 3 -2
0 01 1 -1 2 1 2 -1

The above observation is a basis for computing inverses of matrices.

1.8.7 Reduced Echelon form and inverse

To compute the inverse of matrix

5 -8 1
3 =5 1
—4 7T -1

establish the following three system of linear equation: the first one

5r1 — 8xo + 73 1
3%1 - 5$2 +x3 = 0
74£E1 + 7582 — X3 = 0

with augmented matrix

5 —8 111
3 =5 110
—4 7 =110
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the second one

Sx1 — 8xo + x3
3x1 — dx9 + 3

—4%1 + 7$2 — I3

with augmented matrix

5 —8 1
3 =5 1
—4 7 -1

and the third one

5r1 — 8xo + 73
3x1 — d5x9 + 3
74%1 + 7.%2 — I3

with augmented matrix

5 —8 1
3 =5 1
—4 7 -1

The combined augmented matrix is

OO =

5 -8 1
3 -5 1
—4 7 -1
Performing Gaussian eliminations
Step 1:
5 -8 1 100 1
12 3 3
0 -5 §5|-5 1 0])={—3
-4 7 —-1| 0 0 1 0
Step 2
5 =8 1 1 00 1
0 1 2.3 1 ¢ |=|[ _3
—4 7 -1 0 0 1 0
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Ultimately, using the second observation from the previous section we have

|

-8 1
-5 1
7 -1

5
3
—4

T AN
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thus the desired inverse is

21 3
11 2
-1 3 1

To compute the inverse of a matrix then augment the matrix with the iden-
tity matrix, reduce the resulting system of linearly equations to Reduced Eche-
lon form, the set of solutions (column-wise) is then the inverse of the matrix.

In the above procedure every step is a Gaussian operation. From the previ-
ous section the observations imply that the inverse is the product of Gaussian
operations. For the example above it means that

2 1 3 £ 00 180 1 00
11 2] = 010 010 0 -5 0
-1 3 1 001 00 1 0 01
10 -1 10 0 100
01 0 01 -2 010
00 1 00 1 03 1
100 100
010 -2 10
201 00 1

This is an algorithm to compute the inverse of a matrix if one exists. It also
proves the following theorem (subject to a few technical details).

Theorem 6. If A is an invertible matrix then A can be written as a product of elemen-
tary matrices.

1.9 Homogeneous and particular solutions

Example: Recall the system with augmented matrix

I1+31‘2—|—3I3—|—2I4—|—I5 = 7
3x1 + 922 — 623 + 4wy +3x5 = —7
2x1 + 629 —4x3 + 224 + 225 = —4

with augmented matrix

1 3 3 21 7
39 -6 4 3|7
2 6 -4 2 2|4

OO = 0
S O W
o = O
— O O
S O =
[N}



whose solution set can be described in vector form as

3 1 0

0 0 1

2 + 0 S1 + 0 82|81,82€K
—1 0 0

0 -1 -3

In matrix form the system of linear equations is

Ty
1 3 3 2 1 T2 7
39 —6 4 3 T3 = -7
2 6 —4 2 2 T4 —4
Ts5

Using matrix operations that were defined earlier, substitute the vectors from

the vector form of the solution in the matrix equation A%Z = b.
For the vector without any parameters

3
1 3 3 2 1 0 7
3 9 -6 4 3 2 = -7
2 6 —4 2 2 -1 —4
0
For the vector in front of s;
1
1 3 3 2 1 0 0
39 -6 4 3 0 |=1]0
2 6 —4 2 2 0 0
-1
For the vector in front of s,
0
1 3 3 2 1 1 0
39 -6 4 3 0 |=1]0
2 6 —4 2 2 0 0
-3

In the vector representation of the solution if a vector h satisfies Ah = 6,
where in this case 0 is the vector with all components equal zero then it is
part of the homogeneous solution and if a vector ' satisfies Ap’' = b then it is
a particular solution. In general the set of solution to AZ = b is given by a
particular solution plus the set of homogeneous solutions.
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Here is another homogeneous solution

[ 1 0
13 3 21 0 1
3 9 —6 4 3 (2) 0 | +(-3) 0
2 6 —4 2 2 0 0
i -1 -3
2
13 3 21 3 0
= 3 9 -6 4 3 0 |]=1(20
2 6 -4 2 2 0 0
7
Here is another particular solution
[ 3 1 0
13 3 21 0 0 1
3 9 -6 4 3 2 1+(2) 0 | +(-3) 0
2 6 -4 2 2 -1 0 0
i 0 -1 -3
5
13 3 21 -3 7
= 3 9 —6 4 3 2 | = —7
2 6 -4 2 2 -1 —4
7
For the set of solutions
3 1 0
0 0 1
2 + 0 s1 + 0 Sg‘Sl,SQEK
-1 0 0
0 -1 -3
particular solution homogeneous solution

Theorem 7. Any system of linear equations has a description of the solution set in the
form

{F+c1Bi+-+eubr|ct,...,cn €K} (1.3)

where p'is any particular solution and where the number of vectors B, ..., B equals
the number of free variables that the system has after a Gaussian reduction to Echelon
form.

Argument. The proof of the above theorem relies on the following lemmas.
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Lemma 1. For any homogeneous linear system there exist vectors (31, ..., fj such
that the solution set of the system is

{0151+~~+ck5k|cl,...,ck€K} (1.4)
where k is the number of free variables in an Echelon form version of the system.

Proof. Apply Gauss’s Method to get to Echelon form. Observe that the system
of linear equations has at least one solution (the tuple of all zeroes) and it does
not contain equations of the form 0 = b for a non-zero constant b.

If the system of linear equation has only 0 = 0 type equations then all vari-
ables a free variables and any tuple is a solution thus the lemma holds.

If the system of linear equations has both equations with non-zero coeffi-
cients and some 0 = 0 equations, ignore the 0 = 0 equations since their solution
contains all tuples.

By induction we will verify that each leading variable can be expressed in
terms of free variables. That implies the lemma since the free variables can
be used as parameters and the #’s are the vectors of coefficients of those free
variables.

For the base step consider the bottom-most equation

Al Tl T Wl 4180 1+ 22+ Qi@ = 0 (L5)

where an, ¢,, # 0. (2¢,, is the leading variable in row m.) At the bottom row
any variables after the leading one are free. For this equation the result hold by
Theorem 1 by setting the non-zero coefficient index to £,,.

Assume by induction the statement holds for the bottom-most ¢ rows, with
0 <t < m — 1, the leading variable can be expressed in terms of the free ones.
It remains to verify that it then also holds for the (m — (¢ 4 1))-th equation.

Take each leading variable in a lower equation x, ., xp, _, and substitute
its expression in terms of free variables.

Since the system is in Echelon form all such leading variables have larger
index than the leading variable the (m — (¢ + 1))-th equation. As a result it has
a leading term of

mr

Arn—(t41) - (541) Plm—(e41)
with
Qo (t41), £y 31y 7 05
and the rest of the left hand side is a linear combination of free variables.
Rearranging by moving the free variables to the right side and dividing by

U (t41) £ 1) EXPTEsses this equation’s leading variable z,,_ .,  in terms
of the free variables.

Thus by induction the result follows. O
Lemma 2. Let p' = (p1,...,pn) be any particular solution to a system of linear

equations, then the solution set of the system of linear equations is the set:

S = {j’+ h | h satisfies the corresponing homogeneous system}
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Proof. Let §= (s1,...,sy) be a solution to the system of linear equations.

Consider h = § — 5, substitute in the i’th equation in the corresponding
homogeneous system of linear equations to obtain

ai,l(sl *pl) + -+ ai,n(Sn 7pn)
(@151 4+ @insn) — (ai,1p1 + -+ + @i npn)
= d;—d; =0

Thus 5 =  — h and therefore any solution is in the set S

Conversely, take j+ h, where & solves the associated homogeneous system.
For an equation 4 in the system of linear equations the following holds:

ai1(pr+h1)+ -+ ain(pn + ha)
(aiap1 + -+ @inpn) + (@i 1h1 + - + @i nhy)
= d;+0=4d;

s0 any vector j+ h is a solution to the linear system of equations. O

A homogeneous system of linear equations always has at least one solution.
If there are free variables then such a homogeneous system of linear equations
has infinitely many solutions. Thus if a system of linear equations has a solu-
tion it either has a unique solutions or infinitely many solution; it may have no
solutions at all. The following table summarizes the possibilities.

number of solutions of the
homogeneous system

one infinitely many
) unique  infinitely many
particular Y% | solution solutions
solution
exists? no no
solutions solutions

1.9.1 Zero equals zero and number of solutions

The system of linear equations

I +3$2 5
41}1 +].2(E2 = k
has Reduced Echelon form
I +31’2 = 5
Ox;y +0xy = k—20

If & = 20 we have infinitely many solutions (what are they). If k& # 20 we
have no solutions. So does 0 = 0 tell us that we have infinitely many solutions
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always? Consider the following system of linear equation

ry 43z 4+0x3 +0xy = 5
4x1 +12x9 +O0x3 +0xy = 20
0z +0xo +x3 +3ry = 5
0z +0xy +4r3 +12x4 = 21

which has Reduced Echelon form

Ty +3x2 +0x3 +0xy =
0.131 +OJZ2 “+xs3 +3$4
0$1 +0$2 +0$3 +0’I4
0xy +40xy +0zx3 +0xy4y =

O = ot

even though after Gaussian eliminations there is an equation 0 = 0 the sys-
tem of linear equations does not have infinitely many solutions. In fact it is
inconsistent.

The system of linear equations

r1 +T2 +T3 0
To +T3 = 0

has infinitely many solutions, but no Gaussian operations result in 0 = 0. Thus
the equation 0 = 0 is not necessary for infinitely many solutions.

Remark: In general homogeneous equation have at least one solution. But
other than that just by looking at the system we cannot say if it is consistent
or not. In particular having more variable than equations does not guarantee
infinitely many solutions. In fact it may not even be consistent.
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Chapter 2

Vector spaces

2.1 Definitions and examples

Definition 33 (vector space). A vector space over K is a non-empty set 'V consist-
ing of vectors along with two operations: vector addition denoted by + and scalar
vector multiplication, such that the sum' of two vectors is also in 'V and for any scalar
¢ € Kand any vector ¥ € V we have cv € V. Furthermore, the addition and scalar
multiplication satisfy the following properties:

1. i+7=v+u

2. (W+7)+W=1u+ (04 @)

3. there is a unique zero vector 0 € V such that Vi € V : 0+ @ = @.

4. for each vector ¥ € V there exist a unique vector —v such that @ + (—v) = 0.
5. for each vector ¥ € V we have 1¥ = ¥/

6. for each vector U € V and for all scalars o and 3 we have that o(Sv) = (af)¥
7. o+ V) = at+ ald

8. (a+ B)¥ = ai + B

Examples:

1. The set of complex numbers C over themselves C with standard addition
and multiplication of complex numbers.

2. The set of real numbers R over themselves R with standard addition and
multiplication of real numbers.

In generala V x V — V binary operation
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10.

11.

12.

13.

14.

15.

The set of matrices M., «, (K) of dimension n x m with entries in K with
standard matrix addition and scalar matrix multiplication.

The set of column vectors K" with n components from K with standard
vector addition and scalar vector multiplication.

. The plane pl : 2X + 3Y — Z = 0 in three dimensions with usual addition

and scalar multiplication, formally

X
pl = Y | [2X+3Y -Z=0
Z

with standard vector operations.

Any plane in three dimension that passes through the origin i.e. any
plane pl : AX + BY + CZ = 0 in three dimensions with usual addition
and scalar multiplication, formally

X
pl = Y | [AX+BY +CZ=0
Z

with standard vector operations, where A, B and C can be any real values
not simultaneously zero.

The set of all functions with domain the interval [a,b] and codomain R
denoted by [a, b]]R with standard functions addition and constant function
multiplication.

The set of all continuous functions defined on a interval [a, b] denoted by
Cla, b] with standard functions addition and constant function multipli-
cation.

The set of all sequences {a,, } with standard operations from calculus.

The set of all sequences {a,, } that have only finitely many non-zero terms
with standard operations from calculus.

The set of all sequences {a,, } that converge to zero that is {a, } — 0 with
standard operations from calculus.

The set of all polynomials P with standard (calculus) operations on poly-
nomials.

Polynomials of degree at most n denoted by P,, with standard (calculus)
operations on polynomials.

All functions in the set {acosz + bsinz | a,b € R} with standard (calcu-
lus) operations on functions.

A set with single element z with operations az = zand z + z = z.
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Counterexamples:

1. With standard vector operations the vectors with integer components

Zzz{<i? > |x0,x1€Z}.

This set with these operations is not a vector space. Scalar multiplication

for example
4 2
( : ) 72,

f(1)=(37) =
so scalar vector multiplication is not a function
®:Rx7% =72
its codomain is R? and not Z? that is
®:R x 7% = R?,
2. polynomials that evaluate to 1 at 3 - vector addition is not closed: adding

any two polynomials that evaluate to 1 at 3 results in a polynomial that
evaluates to 2 at 3

2.2 A special example

Let CVS = { [ Zj ] | z,y € R} with the operations

@ : CVSxCVS—CVS

® : RxCVS— CVS

defined as

ieT — T S s| | x+s—2
o Y t| y+t
0od — a@{x}:{aaj2a+2]
Y ay
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Vector addition examples:

0
HE
1007 [
[200_EB
0
HE

Verification: we verify all conditions for vector spaces:

1. the set is non-empty, for example [

1
4:]ECVS

2. closure of vector addition: if x,s € Rthenz + s — 2 € R; if y,¢ € R then
y + t € R. Therefore from the definition of @ vector addition is closed.

3. closure of scalar multiplication: if o, z € Rthen az—2a+2 € R;ifa,y € R
then ay € R. Therefore from the definition of ® scalar multiplication is

closed.

4 tOUT=001U

S
©®
<y

I

SI

@ ~ W
IS
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[z s+p—2
= S
y] [ y+q ]

- [3]= (=)

— do (i)

. there is a unique zero vector 0 € CVS such that Vii € CVS : 0 @ @ = 4.
We want a vector 0 = [ g ] such that 0 & @ = # for all choices of @, then

e [3]e[3]-1552°]- 5]

The above implies A + 2 — 2 = x meaning A = 2 and B +y = B meaning

B = 0. Indeed by setting 0 = [ (2) ] we obtain
> 2 T
Opu = _O}@[y]
B 2+x—2]
| O+y
R
- y}

. for each vector @ € CVS there exist a unique vector —u such that i +

(<u) =0. Let @ = [ Z ] be any vector; solve for —u = [ Cbl ] in

2 o Lo
{0}—0 = uPp-—

I
—
< 8
[
&®
—
> Q
[
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Thus « + a — 2 = 2 meaning that « = —z + 4 and y + b = 0 meaning

that y = —b. Thus the unique vector satisfying the above condition is
- { —z+4 }
=
)
8. lou=1u
1od = 10 [ iy ]
Y

Ixr—2x1+2
1xy
ad
Y
U

9. a®(BoOU) =(af) 00U

a®Bod) = a@{ﬁx_2’8+2}

By
[ a(Br —2B+2)—2a+2
i afy ]
[ aBr —2aB +2a —2a+2
i afy ]
[ afz —2a8+2
afy }

@h)o M
(af) 0 @
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Qe
©
=
®
S

[

[0z +as—20 —200+2+2—2
ay + at
(ar —2a+2) + (s — 200+ 2) — 2
i ay + at
-ozx—Qa—l—Q} [as—Za—i—Z}
3]
i ay at

«o|y|eac |} ]

aOThadU

1. (a+p)Qid=a0idpfod

(a+B)ou =

(a+p8)6e { ;C}
[ (a+ﬂ)x2(a+5)+2]

(a+ By
[ (ax—201—|—2)—|—(ﬂx—2ﬂ—|—2)—2}
i ay + By
-ozx—2a—|—2} {ﬂx—2ﬁ+2]

@
I oy By
x x

ao |t ]aso| ]
aQU®LOU

All conditions for vector space hold therefore we have a vector space!

Remark: In this vector space 0 # [

8 ], we computed that 0 = [ (2) } In

terms of @ + 0 = @ we have for example

els]=ls]A [

instead



as a side observation
3 ol 17 [0
—4 4110

the above is possible in the sense that if 2 denotes the vector with components
that are zero, then for any vector & we have that

i+ (—u+2) =72

2.3 General results for vector spaces

Theorem 8. Vi € V, 07 = C.

Proof. Apply condition 8 above with ¢; = ¢ = 0 to get
07=(0+0)7 = 07407

Since 0 + 0 = 0 the right hand side is 0¢. Add to both sides the vector equation
to —0¢ which exist by 4 to get

00+ (—-00) = 00+ 07+ (—00)

The right hand side become 0
By condition 3

O

Remark: In 0i = 0, the representation of the zero vector depends on the
vector space. For the vector space CVS described in §2.2

ol 2=[e 0]
olo]=Lil# o]

The reason is zero vector representation in that vector space.

likewise

—

Theorem 9. V7 € V,(—1)7 = —v.
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Proof. Observe that 0 =1 — 1 and apply it to the last equation

0 = 00=10+ (—10)
By condition 5 we get
0 = T+ (-10)
Add to both sides —v
v+0 = “v+T+(—10)

which by condition 3 for the righthandside and condition 4 for the lefthandside
implies

Again by condition 3 we have

O

Remark: In (1) = —u, the representation of the additive inverse vector
depends on the vector space and its operations. For the vector space CVS

described in §2.2
NEIE R

o[3]-[8]]3)

The fundamental of the above reason is the special definition of vector addition
and scalar multiplication.

likewise

Theorem 10. Vo € K, a0 =0
Proof 1. Let @ € V and a € K. Then a# = . On the right hand side we have

ot = ai 4 0. On the left hand side using @ 4 0 = @ we have aii = a(@ + 0) =
il 4+ 0. Thus
at + a0 = ai + 0;
adding —a to both sides of the equation
wil + a0 — oil = a4 0 — ai = a+0=0+0
and the desired result follows. O

Proof 2. We will use 0@ = 0 for any vector @:

a0 = a(00) = (a0)0 = 00 =0
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Remark: as in the previous results a0 = 0 refers to the zero vector in that
particular vector space. For the vector space CV'S described in §2.2

olo]=Lil# 0]
olo]=1 2 [0]

2.4 Linear combinations

where as

In the following we assume all sets of vectors are coming from the same vector
space.

Definition 34. A vector 1 is said to be linear combination of ui,us, ..., uj, if there
exists constants a, . . ., o such that

k
w = E oy = iy + -+ aptig
i=1

The set of all linear combinations of vectors 1, ..., Uy is called span of these
vectors. Span is often denoted by (i, ..., 4). Further observations on span
are available in §2.8.

Example: For the vector space R* with standard operations

1 1 0 0 0
2 0 1 0 0
T o | TH o | T3 [T o
-1 0 0 0 1
1
implying that @ = _:23 is a linear combination of vectors
-1
1 0 0 0
o I - o B 0
el - 0 b 62 - 0 I 63 - 1 9 64 - 0
0 0 0 1
Every vector @ in C™ is a linear combination of €1, ..., €, since the system of

linear equations with augmented matrix
L | ]

always has a solutions (here I,, is the identity matrix of order n).
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Remark: as in the previous section linear combinations depend on the choice
of vector space and its operations. For example in the standard vector space

C? the equation
-2 0 0
(3)=n(5) = (V)

with corresponding augmented matrix
0 0]-2
0 1|2

. R -2\ . . .
has no solution and therefore the vector w = ( ) is not a linear combina-

-2

- 0 S 0
a(2). 5= ()

However, for the vector space CVS described in §2.2 the equation

2] = molo]eme]d]

[

tion of the vectors

0 To

—2x1 — 239+ 2
T2

with corresponding augmented matrix obtained by equating the vector com-

ponents
-2 -2| -4
0 1] -2

has a solution ( _;l ) which shows that

that is the vector [ -2 } is a linear combination of the vectors { 8 } and [ 0 ]

—9 1
Another example: for the vector space with standard operations C* we have

(3)=(5) (%)
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SO ( _g > is a linear combination of ( g ) and ( (1) ) but for the vector
space CVS described in §2.2 the equation

5] e fS]emeld]
- [3]e 2]
e

with corresponding augmented matrix obtained by equating the components

of the vectors
0 -2 4
0 1] -5

has no solution and therefore the vector { _g ] is not a linear combination of
2 0
vectors { 0 } and [ 1 ]

Theorem 11. If @ is linear combination of a subset of U1, ¥y, . .., Uy then it is linear
combination of all the vectors.

Proof. Using Theorem 8 multiply each extra @; with the constant zero. O

Example consider the set of vectors

0 0 0 1
0 1 0 0
U = -1 Uy = 0 |,us 5 | ,uy = 0
0 0 1 6
-3 3 3 2
we have that
3 0 1
-2 1 0
0 = -2 0 3 0
18 0 6
0 3 2

the above linear combination can be extended to all vectors via

3 0 0 0 1
-2 0 1 0 0
0 |=0| -1 |-210 0l 5 | +3| O
18 0 0 1 6
0 -3 3 3 2
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Theorem 12. If W is linear combination of iy, s, ..., Uy and each w; is a linear

combination of Uy, s, . .., Uy then 0 is a linear combination of ¥y, Vs, . .., .
Proof. Let
Uy = up Ui+ Uty + - -+ ugy
Uy = U U1 + Uz + -+ - + U Uy
U = Up1 Uk + UkaUs + - - + Upe Uy
then
w o= wlﬁl + U)Q’L_L'Q + 4 wkﬁk

= wi (U111 + w2V + - - + w1 0y)

U1

+wg (ug1T1 + ugeTs + - - - + U9 Ut)

U2

+ -+ wg (ukﬂ_fl + UpoUs + - - - + uktﬁt)

Up

= (wiuir +wougr + -+ + wrug) Ui

w1

+ (wru12 + watgs + - - - + Wiuke) Ua

1132

44 (’wlult + wolgy + -+ + wkukt) Uy

W,

= Wt + Watlh + - + WUk

which establishes the result. O

Example: consider vectors

1 2 3 -5 4
I B T T I T 0 R o] . | -2
U= 2T 2 BT s T —1s T 18
—4 4 4 -2 2

For w0 defined as the linear combination of 41, . .., @5 let
—6 1 2 3 -5 4
I T —2 -1 -3 0 —2
=g [T i [P 2 [0 2 Y —is | TR s
—18 —4 4 4 -2 2



For the set of vectors

the following relations hold

=~ = —o N o _—m_
S~—— o« o™ ~— — T ocxo
— 10 ~ .
+ ™~ o ! <t
— + + — +
O - — O 0110\'/
|
— — _ O - - O
™~ o < )
+ — o + ™
— + —+ — +
oo < oo - _—
S~——— o <t o < ~—— oo < —
A,_; 9__ N~
< <t ™
| I
Il Il Il
PN o
—
— A < 0 O 0 ™
| = — [l o) | — <H* AN O AN
| | N | N | [ —
| Il Il I Il
15 1S 18 1S 15

We then have

~

—_~

N TN~ N N

S O o~
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Theorem 13. Let A and B be matrices such that C = ADB exists, then each column
of C is a linear combination of the columns of A.

Proof. Let
a1 ai2 - a1k bin bz - bip
a21 a22 a2k bar b2 ban
A= and B =
Am1 Am2 - Amk bkl bk:2 e bk:n
If
C11 Ci2 - Cin
C21 Co2 - Con
C=AB =
Cm1 Cm2 e Cmn
Cis
. Cos
then for column s of matrix C, namely .| we have that
cms
cls = a11bis + aizbas + -+ a1bys
C2s = G21b1s + agabas + - - + aorbys
Cms = amlbls + am2b23 + -+ amkbks

Writing the above equation all at once:

Cis ai1 a12 a1k

C2s a21 a22 a2k
= bls . +b28 . ++bk5

Cms Qm1 Am2 Amk

Thus the sth column of matrix C is a linear combination of the columns of A
and the coefficients are the entries in row s of matrix B. O

Example: given the equation

4 3 4 0 1
12 12 18 . 3 3 0 1 2
0 -3 -6 | -3 0 4 3 4
-8 -2 0 4 -2
for the third column of the result we have
4 0 1
18 3 3
6 |72 =3 | T o
0 4 —2
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Theorem 14. Let A and B be matrices such that C = AB exists, then each row of C
is a linear combination of the rows of B.

Proof. Let
a1 a2 - Qi bir b1z -+ bin
a21 az2 - a2k bor b2 - bop
A= ) and B =
Am1 Am2 e Amk bkl ka e bkn
If
€11 Ci2 - Cin
Co1 C2 1 Can
C =AB =
Cmi1 Cm2 T Cmn
then for row r of matrix C, namely ( ¢;1 ¢2 -+ ¢ry ) we have that
1 = Gp1bin + apobor + - 4 arrbpa
Cr2 = Gribia +apabay + -+ arpbio
Crn = arlbln + ar2b2n + -+ arkbkn

Writing the above equation all at once:

( Cr1 Cr2 - Crn, ) = arlbll + ar2b21 +--+ arkbkl

Cr1

ar1bi2 + argbog + - - - + arrbro

Cr2

arlbln + ar2b2n +--+ arkbkn

Crn

= Gr ( b1 b1z - b )
+arg ((ba1 by - o )
+ota (bpr bez o bgn )

Thus the rth row of matrix C is a linear combination of the rows of B and the
coefficients are the entries in row r of matrix A. O

Example: given the equation

-3 3 11 2 3
14 -2 4| | 4 -2 -3 0 4
164—12_—44<111>
-8 -5 -1 1 -5
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for the second row of the result we have

(=14, =2, 14) =4(—3,0,4) —2(1, 1, 1)

2.5 Linear dependence and independence

In §2.4 the underlying question was given a system of linear equation, does
it have a solution. The answer depends on the actual values and if affirma-
tive it implies the system has at least one particular solution. With every sys-
tem of linear equation a related question is does it have a unique solution or
does it have infinitely many solutions. The answer to infinitely many versus
unique solutions is given by the number of solution to the corresponding ho-
mogeneous system of linear equation. This section discusses that question in
relation to vector spaces.

Definition 35. [linear (in)dependence] Let vi,vs, . .., v}, be a set of vectors. If

ai +avy+-+apvp =0 = a=az=--=a;=0
then the vectors v1,v3, . . ., v}, are called linearly independent otherwise the are lin-
early dependent.

Example: In R? the vectors ( (1) > and ( (1) ) are linearly independent, in-

deed the system of linear equations with augmented matrix

1 010
0 1|0

has a unique solution z; = 0 and z, = 0.

1 0 2
Example: In R3 the vectors | 0 |, | —2 | and 2 | are linearly de-
1 3 -1

pendent since the system of linear equation

1 0 2
0 -2 2
1 3 -1

o O O

has a non-trivial solution ;1 = —2, 9 = 1 and z3 = 1.

Example: Consider the vector space CV'S described in §2.2 the vectors
" 4 . 2
u1:{2}andu2:[1]
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are linearly independent, since the vector equation 0 = 211 + 211 gives
2
0

and the system of linear equations

2 010
2 1|0
has a unique solution z; = 0 and z, = 0. However vectors
R 2 . 0
U1:|:0:|andUQ:|:1:|

are linearly dependent since from

BEESHEH

_ 721’2 +2
= 2

4 2

O] 9 Dx2 O 1
2I1—|—2
2Z1+£L'2

one obtains the system of linear equations

0 =210
0 110

which has a non-trivial solution (one such solution is z; = 5 and x5 = 0).

Example: In C[a,b] — the vector space of continuous on a interval [a, b] func-
tions vectors are continuous functions. Let

fi = fi(z)=cos2x
fo = fo(x) =sin’z
fs = f3(z) = cos’z
fi = fu@)=e
fi = fs(x)=-3

The zero vector 0 is the function z(z) = 0, that is the constant function zero.

1. fi = fi(z) and fo = fo(x) are linearly independent, indeed consider the
equation

0=afi +Bf
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in function form
z(z) = afi(z) + Bfa(x)

In the function form the equation must hold for any = € R. That is, you
first find o and 3, and for those o and 3 the equation must hold for any
x € R. If that is the case consider what happens at z = 0

2(0) = afi (0) + Bf2(0) = 0=acos(2x0)+ Bsin’0
Since cos(0) = 1 and sin(0) = 0 the equation implies
0= a+ S0.

s

Apply the same for z = T

(D) =ots(3) e () = 0mamn(en ) o ()

1
Since cos (g) = 0 and sin? (%) =3 the equation implies
B
0=oa0+ .
al + 5
The set of equations
_ B
0 = a0+ B
0 = a+p50

has unique solutions o = 0 and 5 = 0.

. The vectors fo = fo(z), f3 = fs(z) and f5 = f5(x) are linearly dependent.
Consider . B L

afp+Bfs+7f=0
since the vector equation

6f2+6f5+2f5=0

equivalently in function form

6 sin®(x) +6 cos®(z) +2( —3 ) = z(x)
~—— ~—— \f/
f2 fa fs
is satisfied for any value x € R.

. The vectors ﬁ = fi(z), f;:, = f3(z) and ﬁ; = fa(z) are linearly indepen-
dent, the equation

0=afi+Bfs+7fa
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in function form

2(z) = afi(z) + Bfs(x) + v fa(x)
evaluated at z = 0 implies
z(0) = afi(0)+Bf3(0) +vf1(0)

=0 = acos(2x0)+ Bcos? (0) 4 e’
=0 = a+f+7y

The same equation evaluated at = = 7 implies

z2(m) = afi(7)+Bfs(7) + /s (x)
=0 acos (21) + Beos? (1) + ye™
=0 = a+f8+ve"

s
The same equation evaluated at = 5 implies

(3) = an(3)+en(3) 0 (3)
=0 = a«acos (2%) + Bcos? (g) ‘*‘7@%

=0 = —a+n~e?
The set of equations

oa+ B+
= a+f+qe"
0 = —a+nre?

has only one solution, namely « =0, 5 =0and v = 0.

Theorem 15. The standard basis vectors are linearly independent, in other words the
columns and rows of I are linearly independent.

Proof. Let é; be the vector whose ith coordinate is one and the rest zero. Con-

n

sider the system of linear equation whose vector form is E éx; =0or

i=1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
€1 éo €n—1 €n



This system is in row-reduced Echelon form and has a unique solution

I 0

i) 0

Tp—1 0

Tn 0
Thus the standard basis vectors are linearly independent. O
Theorem 16. Let vi,v3, ..., v} be collection of vectors. If k = 1 the system of vectors

is linear dependent i and only if vi = 0.

Proof. 1f & = 0 then 17 = 10 = 0 and therefore it is linearly dependent.
Assume 7 is linearly dependent then o' = 0 for some non-zero constant a.
Multiplying both sides by a~* we obtain & = a~'0. Or

—

T=a"10=a"1(00) = o (00) = (a'0)0 = (0)0 =00 =0

O
Theorem 17. Let v1,v3, ...,V be collection of vectors. If for some 1 < i < k we
have that v; = O then the system of vectors is linear dependent.
Proof. Self study excerise O
Theorem 18. Let 01,03, . .., U}, be collection of vectors. If for some 1 < i # j < k we
have that v; = v then the system of vectors is linear dependent.
Proof. Self study excerise O
Theorem 19. Let 07,03, . .., v}, be collection of linearly dependent vectors and k > 1.

Then there is an index i such that v; can be written as a linear combination of the
remaining vectors.

Proof. Self study excerise O

2.6 Main theorem

The next result has various applications in determining if a set of vectors is
linearly dependent as well as its size. Before stating it the following note is
worth mentioning
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Remark on terminology. Given two sets of vectors A and B such that ev-
ery vector of A is a linear combination of the vectors in B, for example as in
Theorem 12, consider the statement

A is a linear combination of vectors in B
and the statement
A is a linearly dependent set.

The former statement refers to Definition 34, the latter statement refers to Def-
inition 35. To that end the statement

A is dependent

(bar any grammar issues) tends to be confusing. Does it mean A depends on
how the vectors in B are given — that is if you change the vectors in B, the
vectors in A also change? Or does it mean A is linearly dependent set? To
my knowledge text on linear algebra would mean that A is linearly depen-
dent in the sense of Definition 35. However, as far as students (or those who
learn linear algebra) are concerned the statement meaning differs for different
individuals. Please do not make such statements. Be verbose: use one of the
previous two statements!

Theorem 20. Let A = {a3,a3,...,as}and B = {b_i, b, b_;;} be two non-empty
sets of vectors. Suppose that for each 1 < i < s we have that a; is a linear combination
of{b_i, bg, el b_;;} that is

@i = b+ viobs + -+ Yikby
Y2101 + Ya2ba + - - - + yarby

Q
¥)
I

as = 75151 + 75252 +-- 4+ ’Vskgk
Suppose also s > k then the vectors in A are a linearly dependent set of vectors.

Proof. The argument proceeds by induction on k.

Base case k = 1: :Since k = 1 then B = {b;}. Then

a = b
az = 72151
as = A/slbb
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If for any index 4, ;1 = 0 then A contains the zero vector and therefore A is
linearly dependent. Suppose now for all indices i, v;; # 0 then since s > k =1,
there are at least two vectors a7 and a3 in A. Consider

’Yzlaﬁi - 711@ = ’Y21’Y11b; - 71172151 = 01;1 = 6

Then a7 and a3 are linearly dependent. And since they are subset of A, then A
itself is linearly dependent. This concludes the base case.

Inductive step: Let k > 2. By the theorem statement we have

a = ’an: +712b; + "'+71k5k
az = 721b1 +y22b2 + - + y2rbk
as’1 = Ye—1)1b1 + V—1)2b2 + -+ Ys—1)rbk-
a_:s = 7516’1 +752B’2++75k5k
Ifall v41,7vs2, - - -, Vsk are zero then a; = 0 and therefore A is linearly dependent.
Suppose now at least one of 7,1, Vs2, - . ., Vsk is non-zero. Without loss of gener-

ality let 1, # 0. In this case we add % the last equation to the first equation.
Similarly, we add —%* the last equation to the second equation and so forth

v
until we add % the last equation to equation s — 1 to obtain equations

- 1 - - - -

ay = di — 3 0 = Vbt + vigb2 + -+ Vi1 D)

S
7 - 2k - - - e
ay = a3 — 5 kas = Yy b1 4 Ypebo + - + ’Yé(k—l)b(kfl)
S
- - V(s—-1k - - - e
@, =ay— (: k) @5 = Yeminb1 Y smn2be o Yooy ooy P
S
Since s > k, then s — 1 > k — 1. Furthermore, each a_’;, . ,a’;_1 is a linear
combination of the vectors b/, ...,b)_,. We apply the inductive hypothesis to
conclude that a71, - ,a’;l are linearly dependent. In other words there exists
(1, fi2, - . . , pis—1 not all zero such that
0 = md; +poah+- -+ poral 4
-, 1k - " 2k - - VY(s-Dk -
= U1 (al _ 7 as) + o <a2 7 fls) + ts—1 (as—l — (é)as>
Vsk Vsk Vsk
= 14 + pody + -+ ps_1a5°1 + Td;.

Since at least one of y;’s is non-zero, the vectors a3, a3, . .., d; are linearly de-
pendent. 0
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Example: In the standard vector space R? if a set A contains five or more

a1
. a; . . . .
vectors a; = a’2 each one is a linear combination of the standard basis
i3
Q4
vectors
1 0 0 0
. 0 . 1 R 0 . 0
ee=1 e2=1 es=1 4 “a=19 |
0 0 0 1
namely,
a; = Gi1€1 + 26 + a;3€3 + a;4€y.

Then the vectors in A are linearly dependent. This can be generalized to say
that in R any set of n + 1 vectors is linearly dependent. Observe that if we
have n or less vectors in R" they may or may not be linearly independent.
Theorem 20 implies nothing if the size of A is smaller than or equal to the size
of B.

Example: Let A = {d;,ds,d3,d4} and B = {51, 52, 53} where

3 6 3 4
S -3 L 0 ~ | o I 4
1 — 4 a2 - 4 a3 - 2 4 — 0
7 10 5 2
and
2 1 -2
S -1 - 1 - -5
b = 9 by = 0 by = 0
4 1 0
We have that
a 261 — by
Gy = 2by+ 2by
i3 = by +by
Gy by — bs

then vectors in A are linearly dependent.

Remark: in the first example above the set B is linearly independent (the
vectors €; are linearly independent). In the second example the set of vectors
in B are linearly dependent. This shows that Theorem 20 says nothing about
the linear dependence or independence of the set B.

The next result show a non-trivial application of Theorem 20.
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Theorem 21. An n x n matrix A has linearly dependent rows if and only if it has
linearly dependent columns.

Proof. Let A = (¢1,...,6,) = :|. If the rows of A are linearly dependent

then we know that the equation
alfl+"'+anﬁl :6

has a solution where at least one «; # 0. Then we can write

N ar Q1 ap Qp
r, = —7T1 _|_ P _|_ ;
4 Qg Qi1 Q;

Thus each vector in the set {7, ..., 7, } is a linear combination of the vectors in
{F1,...,Fic1,Ti+1, - - -, Tn }. Therefore using properties of matrix multiplication
we can write
T1
A= : = BC

—

Tn

Where B is an n x n—1 matrix and C'is a n—1 x n matrix. Furthermore the rows
of C areequal to {71, ...,7_1,7;41,...,7n }. In this case, however, the columns
of A are linear combinations of the columns of B. There are n — 1 columns in
B and n columns in A. Thus by the above Theorem 20 the columns of A are
linearly dependent. Similar argument applies if the columns of A are linearly
dependent. O

2.7 Subspaces

Definition 36 (subspace). Let V be a vector space and let U be a subset of V. If U
is a vector space itself then U is called a subspace of V

Examples: the following are example of subspaces.

1. Every vector space is a subspace of itself.

((5)1-e%)
() ez
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2. The z-axis defined as

is subspace of R?

3. The y-axis defined as

is subspace of R?



4. The set

()]

5. P, polynomials of degree at most n are a subspace of the set of all poly-
nomials P.

is a subspace of R

6. For the vector space CV'S described in §2.2 the vectors the following set
is a subspace
F o T
eR
{ Ly )1 }
7. For the vector space CVS described in §2.2 the vectors the following set

is a subspace o
x
{_ 0| |m€R}

8. For the vector space CVS described in §2.2 the vectors the following set

is a subspace
2
0

The set consists just of the zero vector in CVS.

Counterexamples: the following are not subspaces (even though they are
subsets of the corresponding vector spaces).

1. line through points (1,0) and (0, 1)

(I

is not a subspace of R?. It does not contain the zero vector for example;
the vector operations are also not closed.

2. The set consisting of the single element
2
0

3. Even degree polynomials P, are not a subspace of polynomials P: for
example

is not a subspace of R%.

pi(z) = 2’+z+1€P,
pe(r) = —2®-1€P,
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but
pi(z) +p2(z) =2 € P,

thus polynomial addition is not closed for even degree polynomials.

4. Odd degree polynomials P, are not a subspace of polynomials P: for
example

) = 2°+22+1€P,
@) = —2*-1eP,

but
0 (2) + @) = 2 € P,

thus polynomial addition is not closed for odd degree polynomials.

5. For the vector space CVS described in §2.2 the set
0
0

Theorem 22. In any vector space V the vector space itself is a subspace and the zero
vector on its own is a vector space.

is not a subspace of CVS.

Proof. Verification of all vector space properties is straightforward. O

The vector space itself and the zero vector are often called the trivial sub-
spaces. The next result establishes an efficient way to test of a subset of a vec-
tors space is also as subspace.

Theorem 23. A set U is a subspace of V if and only if for all @, € U and for all
s,t € K we have that st + tw € U.

Proof. 1f U is a subspace of a vector space V, then it is a vector space itself and
since the operations are closed we have that si + ¢ € U.

Suppose now Vi, w € U,Vs,t € K, sii+tv € U. We will verify all properties
of vector spaces for U.

closure of + from Vii,w € U,Vs,t € K, s + tw € U for s =t = 1 we conclude
Vi, we Ui+ W =1d+ 1 € U

closure of - from Vi, w € U,Vs,t € K,st +tw € U fort = 0 and 4@ = W we
conclude Vi € U,Vs € K, sti = s+ 0w € U

commutativity since the operations are inherited from V the result follows
associativity since the operations are inherited from V the result follows
zero vector from Vi, w € U,Vs,t e K,si+tw € Ufors=t=00=0+0 =

04 + 0w € U; uniqueness and neutrality is inherited from V;
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neutral inverse from Vi, w € U,Vs,t € K, st + tw € U for @ = &, s = 0 and
t=—1wehaveVi € U ~u=0+—u=0i+ (-1)7 € U;

distributive properties are inherited from V.

Example: consider

X
S= Y | [3X +6Y =27 3 C R
Z

One way to verify the above subset is also a subspace is to check all conditions
of Definition 33 as done in §2.2. The alternative is to use Theorem 23. Let

Ly

U = Yu | €S
Zu
L

b o= Yw | €S
Rw

By definition we have
3T, + 6y, = 2z,
3Ty + 6y = 22z,.

Multiply the first equation with s and the second equation with ¢ and add them
together to obtain

3(sTy +txy) + 6(szy +tyw) = 2(szy +t2y)
which means
Ty, Ty
su+td = s| yu | +t| vuw
2y Zw
3(sxy + tTy)
= 6(sxy +tyy) | €S
2(8zy + tzuw)

By Theorem 23 the set S is a subspace of R3.

Example: consider

T= |3X+Y =Z+1, CR®

N <
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Let

g
Il
/

with s =1 and ¢ = 1 we get

st + tuwd
5

()

By Theorem 26 the set T is not a subspace of R>.

Il
—_
/N
[anl \V]
N—
+
—_
//
—= NN O
N———

2.8 Span

Definition 37 (span). Let S = {1,..., Uy} be a set of vector the set of all linear
combinations of the vectors in S is called the span of S and denoted by (S)

(S) ={atr + -+ amtim | a1...am € K}

IfS = () then (S) = {0}

Examples:

1. For the vector space R? we have
2 1 0

= = (o)1

r-axis = <

y-axis =

79



If [ is the line = + 3 = 0 in R? that is the set

{(5) w001
()

2. (1,z,2?) = P, that is the span of 2°, x and 2 is the set of all polynomials
of degree at most two.

then

3. (P2) = P that is the span of all polynomials of degree at most two is the
set of all polynomials of degree at most two.

4. (1,z,2%,...,2") = P, that is the span of 2%, z,...,2" is the set of all
polynomials of degree at most n.

5. (29,21, 2%, ..., 2™ ...) = P that is the span of powers of x is the set of all
polynomials.

6. (P) = P that is the span of polynomials is the set of all polynomials.
7. For any vector space V we have

V)=V

ovs = ((0):(7))=((0)-(7)-(3))
ey = (00))=(0G) (1))
o freesp = () ={G)-(3)
)y = {0))-w

9. Let 5; denote the sequence {s;;} where

o1 =i
BTl 0 t#d

thatis
5 1,0,0,0,. ..
5% = 0,1,0,0,...
g = 0,0,1,0,...

80



Then the set of sequences with finitely may non-zero terms equals
(51, 89,...)

Example: consider the system of linear equations

T1 + 2x9 + x3 + 4dxg + 225 5
2x1 +4x92 +3x3+8x4+3x5 = 9
1+ 2x9 + 223+ 514 +25 = 5
1+ 209 +23+2205 = 1
equivalently in vector form
1 2 1 4 2
2 4 3 8 3
1 1 + 9 T2 + 9 T3 + 5 Tq + 1| % =
1 2 1 0 2
has solution (verify it)
I = 3 + 351 + 252
i) = 1 + S92
I3 = -2 — S1
Ty = 1
5 = -1+
in vector form
3 3 2
1 0 —1
-2 + -1 S1 + 0 So |81,82€R
1 0 0
-1 -1 0

The particular solution implies

1 2 1 4 2 5
2 4 3 8 3 9
e T2 |72 2T ] 1| T |5
1 2 1 0 2 1
equivalently
) 1 2 1 4 2
9 c 2 4 3 8 3
5 T 1’1t 21’1211’ 5 7|1
1 1 2 1 0 2

81

= Ut © Ot



Conversely, if

4 1 2 1 4 2

91 ¢ 2 4 3 8 3

5 T 121’121’5171

4 1 2 1 0 2

then the system of linear equations in vector form

1 2 1 4 2 4
2 4 3 8 3 9
I R N Rl T s R el IR R
1 2 1 0 2 4

has a solution. This is an example of the following result

Theorem 24. A system Ax = b has a solution if and only if b is in the span of the
columns of A.

Proof. Consider AZ = b as matrix multiplication by Theorem 13 the columns

of the result are a linear combination of the columns of A. Thus if AT = b
has a solution then b is a linear combination of the columns of A equivalently

b is in the span of the columns of matrix A. Conversely, if b is in the span of
the columns of matrix A then there is (column) vector ¢ such that A¢ = b and
therefore AZ = b has a solution. O

Example: continuing the above example using the homogeneous solutions
we have

N N RN
e

N = W N
[ = S NI
— N W
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For the set (A) which is the span of columns of matrix A by Theorem 12 we get

1 2 1 4 2
2 4 3 8 3
<A><1’2’2’5’1>
1 2 1 0 2
1 1 4 2
/| 2 3 8 3
SN2l st
1 1 0 2
1 1 4
/| 2 3 8
RN O N R A
1 1 0

Theorem 25. (S) = (S U ) if and only if i € (S).

Proof. Assume first @ € (S). The inclusion (S) C (S U «) holds since S C S U .
For (S) D (SU @) since 4 € (S) then # is a linear combination of the vectors in
S and by Theorem 12 any vector that is linear combination of S U # is a linear
combination of the vectors in S meaning that (S) D (S U @).

Assume now (SU @) = (S) since @ € SU @ then @ € (SU W) = (S).

Thus the result follows. O

Theorem 26. The span of a set of vectors is a vector space.

Proof. Let u,w € (S), then by properties of vector spaces si + tw € (S). By
Theorem 23 the result follows. O

2.9 Basis and Dimension

Definition 38 (basis). Let V be a vector space, the set of vectors B = {by, ..., ba}
is a basis for 'V if every vector in 'V can be represented as a linear combination of the
vectors in B and the vectors in B are linearly independent.

We can express elements of a vector space using basis elements. If B is a
basis for Vthen B C V.

Standard basis: For the vector space R? the set E = {é}, é,, €3} where

1 0 0
ei=| 0 ],e&a=1|1 |,é&5=| 0
0 0 1
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is a basis since for any vector @ € R* we have @ € (E). This basis is known as
the standard basis and can be generalized to any R". An alternative basis for

R3is B = {51,52,53} where

) 1\ 0\ _ 0
b= -1 |,by= 1 ],55=10
0 - 1

Using span notation we have
R® = (1,8, 63) = <51,52,53>

Example: for the subspace S of the vector space R?® defined in §2.7 we have

2\ [0
() )
0/ \ 3
4 2
() (=)
-9 —6

Example: for the vector space P2 we have bases B and D where

S = (B)

(D)

P,=(B) = (62*-39z+23,  —52°+332z-19, —2’+72—4)
(D) = (2 -8z +5, r? —5x+3, —z® + Tz —4)

Example: consider the vector space CVS described in §2.2. It has bases B

(22
o - (2]

Remark: in all examples above the number of basis vector for the same vec-
tors space remains the same. This is not a coincidence.

CVS = (B)

Theorem 27. Let By and By be two distinct basis for a vector space V. Then the
number of vectors in By and By is the same.

Proof. Suppose by contradiction the size (number of vectors in the set) of By
does not equal the size of By. Without loss of generality suppose the size B, is
strictly larger than the size of B;. By definition of basis every vector in B, is a
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linear combination of the vectors in B;. Then by Theorem 20 the vectors in B,
must be linearly dependent contradicting the fact that B, is a basis. Thus all
basis have the same number of vectors. O

Definition 39 (dimension). Let B be a basis for a vector space V, then the size of B
is called the dimension of V.

Definition 40 (finite dimensional vector space). A vector space is called finite

dimensional if it has a basis with only finitely many vectors.

Remark many of the result that are discussed here are valid for infinite di-
mensional vector space, however, the arguments presented here are valid for
finite dimensional vector space. Infinite dimensional vector spaces are a topic
of a different course. Using the notation/examples from §2.1
Examples:

1. K" is finite dimensional vector space;

2. Myuxm(K) is finite dimensional vector space;

3. C[a, b] is infinite dimensional vector space;

4. P is infinite dimensional vector space;

5. P, is finite dimensional vector space;

6. the vector space from §2.2 is finite dimensional vector space.
Theorem 28. Any linearly independent set can be extended to a basis.
Proof. Self study exercise. O
Theorem 29. Any spanning set contains a basis.

Proof. Self study exercise. O

2.10 Coordinates

In § 2.4 the underlying question is whether a system of linear equations has a
solution. Span is the set of all linear combination so §2.8 reiterates the same
problem. Linear independence as in §2.5 is concerned with uniqueness of so-
lution to a homogeneous system of linear equations. For a given consistent
system of linear equations if the corresponding homogeneous system of linear
equations has a unique solution then the original system of linear equations
has a unique solution. Coordinates, similar to linear independence, discuss the
idea of non-homogeneous system of linear equations having a unique solution.
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Theorem 30. Lef €1, . .., €, be linearly independent. Suppose @i = a1€1+- - -+ anép,
and @ = byeq + -+ + bpé,,. Then a; = by, ay = ba,..., a, = b,.

Proof. Suppose

U = aie1+ - +ané,
U = biel+---+bye,.
Subtracting them gives
0 = (a1 —b1)& + -+ (an — bn)én.
Since €1, . .., €, are linearly independent the only solution is
0 = a1—bh
0 = a,—b,
which implies the result. O

Definition 41 (coordinates). Let @ be a vector in a d-dimensional vector space V.
Let B = {by,..., by} be a basis for V. By definition of basis

ﬁ:u151+~-~+udgd.

The values uy, . .., uq are the coordinates of i with respect to basis B.

Representation map. Let U be a vector space of dimension d with a basis
B= {51, cee gd}. The map
Rp:U— K’

called representation map is defined as

U
U2
R (1) =
Ug B
U1
where w1, uso, . . ., ug are the coordinates of @ in basis B. The vector : is

Uqg B
the representation of vector « in basis B. Whenever the basis B is understood
from the context, the subscript is often omitted. It is straightforward to verify

that for a basis B if
(7

— U2
Rg (0) =

Ug B
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and

w1
— w2
RB (w) = .
wq B
then
sup + twy
Suo + twoy
R (sii + 1) = sRp (il) + Rp (td) =
suz + twy

B

Example: consider the vectors space R*. For vector ¢ where

1 0 0
cr=1 0 ],&a=[ 1 |,e&5=| 0
0 0 1
the vector equation
1 1 0 0
0 = I 0 + Z2 1 + 3 0
2 0 0 1

is equivalent to a system of linear equations with augmented matrix
1 0 01
0 1 00
00 1|2

whose solution particular solution are the coordinates of @ in basis E and im-
plies the vector equality

1 1 0 0
0 = 110 ])+0 1 | +2] 0
2 0 0 1

In other words the representation of « in basis E is

1 1
RE 0 = 0
2 2
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For the same vector space and a different basis B = {51, Z;Q, 53} where

. 1 . 0 . 0
1= -1 5 b2 = 1 s b3 = 0
0 -1 1
the vector equation
1 1 0 0
0 = X -1 —+ X9 1 + x3 0
2 0 —1 1

corresponds to a system of linear equations with augmented matrix
1 0 0]1
-1 1 0|0
0 -1 12

whose particular solution consists of the coordinates of vector « in basis B and
implies the vector equality

1 1 0 0
0 = 1| -1 | +1 1 1+310
2 0 -1 1

In other words the representation of  in basis B is

1 1
RB 0 = 1

2 3 /)5

Example: in the vectors space R? the subset

X
S = Y | |3X +6Y =27
z

is a subspace, which means it is a vector space on its own. For vector @ € S
where

4
=1 -3
-3
and basis B = {51, 52} where
. 2 . 0
bi=| -1 |,bo=1| 1
0 3
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the vector equation

4 2 0
-3 = -1 + x2 1
-3 0 3
is equivalent to a system of linear equations with augmented matrix
2 0 4
-1 1|3
0 3|-3

whose particular solutions are the coordinates of « in basis B and imply the
vector equality

4 2 0
-3 = 21 -1 | -1 1
-3 0 3
In other words the representation of vector i in basis B is
4

w((4) - ()
-3 A

Consider an alternative basis D = {cfl, cfg} where

4 2
di=| -5 |,do=| -3
-9 —6
for the same vector « the vector equation
4 4 2
-3 = X1 -5 + X2 -3
-3 -9 —6
is equivalent to a system of linear equations with augmented matrix
4 2 4
-5 =3 -3
-9 —-6|-3

whose particular solutions are the coordinates of @ in basis D and imply the
vector equality

4 4 2
3| = 3| -5 |-4| -3
-3 -9 —6
In other words the representation of vector i in basis D is
4
“((4) - (3)
_3 o D
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Example: consider Py — the vector space of polynomials of degree at most
two. For vector @ where
i=-2"+5x+3

and basis B = {51, 52, 53} where

by = 622—39z+23
by = —5224+33x—19
53 = 2?4+ 7x—4

For the same vector @ the vector equation
—2®+52-3 = o (62°—392+23) + ax (—52> + 332 — 19) + a3 (—2® + Tz — 4)
is equivalent to a system of linear equations with augmented matrix
23 -19 —4] -3
-39 33 7| 5
6 -5 —-1|-1

whose particular solution are the coordinates of vector # in basis B and imply
the vector equality

—2®+52x-3 = 0(62°—392+23) +1(-52°+332—19) —4(—2®+ 7z —4)

In other words the representation of vector « in basis B is

0
Rp(—2®+5zx—-3) = 1
-4 )
Consider a different basis D = {cfl, cfg, d}} where
cfl = 22-8zx+45
Jg = 22-52+3
dfn, = —2?4+7x—4
the vector equation
—2*+52-3 = a;(2®—82+5)+a (2 —52+3) +az(—2®+Tz—4)

is equivalent to a system of linear equations with augmented matrix
5 3 —4| -3

-8 =5 7 5
1 1 —-1|-1
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whose particular solution are the coordinates of vector @ in basis D and imply
the vector equality

—2*+52—-3 = 0(z°—82+5)—1(2>—52+3)+0(—2”+7z—4)
. In other words the representation of vector # in basis D is

0
Rp (—2*+52-3) = -1

0/ b

Example: consider the vector space CVS described in §2.2. For vector @

where
L 4
Y= -3
and basis B = {51, 52} where

SHEEH

By equating the components in the vector equation

4 = © 3_@ © 2
3| T ¥l YY1
_ .’131—}—2- 2
- [l
B x1—|—2-
- o |

one obtains a system of linear equation with augmented matrix

1 0 2
0 1]-3)°
whose solution implies

] eelb et

In other words the coordinates of vector @ in basis B, equivalently its represen-

tation in basis B is
4 2
el s]) - (5),
-3 -3 )5

Consider a different basis D = {(fl, d;} where

i [t)ae[ 2]
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the vector equation is

4 0 3

] = e Veme] 4]

T —I2
—2I1+I2—|—2
1 — T2

and its corresponding system of linear equation

(7 al4)
] = el ]ese[ 2]

The coordinates of vector # in basis D, equivalently its representation in basis

(1)) - (),

Recall: In the vectors space R? the subset

implies

X
S = Y | [3X46Y =27
Z
is a subspace and
2 0 2
5= < ] (o >
0 3 3
4
For the vector @ = | —3 | the vector equation
-3
4 2 0 2
-3 = X -1 + 2o 1 + x3 0
-3 0 3 3

is equivalent to a system of linear equations with augmented matrix

2 0 2 4
-1 1 0]-3
0 3 3|-3
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that has infinitely many solutions. For example

4 2 0 2
-3 = 2| - -1 1 |+0[ O
-3 0 3 3

2 0 2
= -1 -1 | -4 1 | +3]| O
0 3 3

In other words vector % cannot be represented in a unique way. The ambiguity
is the reason to require linearly independent vectors in a basis.

Theorem 31. In a vector space a subset B is a basis if and only if any vector can be
represented in a unique way as a linear combination of the vectors in B.

Proof. If B is a basis then by definition every vector in the vector space is rep-
resented in a unique way. Conversely, if every vector in the vector space can be
represented in a unique way as a linear combination of the vectors in B, then
by definition B spans the vector space. The zero vector can be represented as
a linear combination of the vectors in B by taking all coefficients as zero and
apply Theorem 8. Since by assumption there is only one way to represent ev-
ery vector, this is the only way to represent the zero vector, which means the
vectors in B are linearly independent and thus B is a basis. O

2.10.1 Change of basis

Let @ € V and let B and E be two bases for V. Given the coordinates of @ with
respect to E what are its coordinates with respect to B? We will illustrate the
answer with a few examples.

Example: Recall from §2.10 bases E and B for R3.

1\ /0\ /o0

<0,1,0>
0o/ \o/) \1
1 0\ /0

<1,1,0>
0/) \ -1 1

For each basis vector E compute its representation in basis B. For ¢) solve

%,
I
=
I

B
|

1 1 0 0
0 = X1 -1 —+ X9 1 +I’3 0
0 0 -1 1
to obtain
1
Rp(€1) = 1
1
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For &5 solve

0 1 0 0
1 = I -1 + x9 1 + x3 0
0 0 -1 1
to obtain
0
RB (52) = 1
1
For €5 solve
0 1 0 0
= 21| -1 | +a9 1 | +z3
1 0 -1 1
to obtain
0
Rp(€3)=1| 0
1

Write the representations in that order to a matrix

Re_p (id) =

— = =
— = O
_ o O

The result is the change of basis from basis E to basis B. For that matrix the
following matrix equation is satisfied

Rp(@) = R (id) Re ()

with the values from the example

1 1 0 0 1

1 = 1 1 0 0

3 1 1 1 2
Rp (@) R 5 (id) R (@)

Example: Recall from §2.10 bases B and D for the vectors space

X
S= Y | [3X +6Y =22
Z
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For each basis vector B compute its representation in basis D

2 0
S:<B>:< Rl 1>
0 3
4 2
(D) = < -5 1,1 -3 >
-9 —6
For 51 solve
2 4 2
—]_ = 1 _5 +$2 _3
0 -9 —6
to obtain
- 2
Rop ( 1) - < -3 )
For by solve
0 4 2
1 = X ) + X2 -3
3 -9 —6

to obtain
mo (i) = ().

Write the representations in that order to a matrix

Rp-p (id) = ( 7; 7; )

The result is the change of basis from basis B to basis D. For that matrix the
following matrix equation is satisfied

Rp (@) = Rp—p (id) Rp(@)

with the values from the example

(3)=052)(3)

Example: Recall from §2.10 bases B and D for the vectors space P». For each
basis vector B compute its representation in basis D

P,=(B) = (62%—39z+23, —5x%+ 33z — 19, —2? 4+ Tz —4)
D) = (2*-8x+5, r? —5x+3, —x2—|—7x—4>
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For 51 solve

622 —-392+23 = o (x278x+5) + o (x275:17+3) + as (fx2+7x74)
to obtain
1
Ro (51) - 2
-3

For 52 solve

5224332z -19 = oq(x2—8x—|—5)+oz2(x2—5x—|—3)+a3(—x2—|—7x—4)
to obtain
. 0
RD(bz): 1
4

For 53 solve

2?4+ Tz —4 = oq(m2—8x—|—5)+a2(x2—5:c—|—3)+a3(—x2—|—7x—4)
to obtain
. 0
RD(bg): 0
1

Write the representations in that order to a matrix

1 00
Rp_p (id) = 2 -1 0
3 4 1

The result is the change of basis from basis B to basis D. For that matrix the
following matrix equation is satisfied

Rp (@) = Rp_p (id) Rp()

with the values from the example

Example: Recall from §2.10 bases B and D the vector space CVS described
in §2.2.

CVS = (B)

Il
T
L —
o W
—_
| —|
_= N
— [
~~——"

(D)

I
S
—

— O
[EE—
—
\

I
~_—



For each basis vector B compute its representation in basis D. For by solve

o] = wod]eme] 2]

to obtain

For 52 solve

to obtain
mo(R)=( 2 )
Write the representations in that order to a matrix
Rp-p (id) = ( :i :; )
The result is the change of basis from basis B to basis D. For that matrix the
following matrix equation is satisfied

RD(TT) =RpoD (Zd) RB(ﬁ)

with the values from the example

1\ (-1 -1 2

4 )\ -1 =2 -3 )
211 Rank of a matrix

Theorem 32. Let A be a square matrix for which there is a square matrix B such that
AB = I. Then the columns of A are linearly independent.

Proof. Let Abe k x k matrix. Since A is invertible then there exists A~! such that
AA~! = I. In the last multiplication it follows that the columns of I are linear

combinations of the columns of A. Denote the columns of 4 as ai, . . ., d; and
suppose by contradiction that a3, . . ., dj, are linearly dependent. Let by, ..., by,
where m < k be a set with largest cardinality such that by, ..., b,, are linearly
independent. Then the columns of I are linear combinations of b:, e bm. This
follows from the fact that aq, . . ., a; are linear combinations of b_i, ey b:n. Then
by Theorem 20 the columns of I are linearly dependent, which is a contradic-
tion with Theorem 15. O
Recall Theorem 4
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If for a matrix A there exists matrices B and C such that AB = T
and AC = 0 then C = 0, where 0 is the zero matrix.

Here is an alternative proof using linear dependence and independence:

Proof. Let A be k x k matrix and assume by contradiction AB = 0 and B # 0.
Let the ;" row of B contain a non-zero element. Denote the j row of B by

b;t. Then Ab;t = 0, which means that the columns of A are linear dependent
contradicting Theorem 32. O

Theorem 33. Let A be n x m matrix. Then the number of linearly independent rows
equals the number of linearly independent columns.

Proof. Suppose A’s columns are spanned by b, ..., b, then there is an r x m
matrix C' such that

[@1...dm]|=A=BC=][b...b]C.

By properties of matrix multiplication the rows of A are linear combinations of
the rows of C' and therefore the rows of A contain at most r linearly indepen-
dent rows. Thus the number of linear independent rows of A do not exceed
the number of linear independent columns of A. Applying the same argument
for the transpose of A we obtain that the number of linearly independent rows
of A equals the number of linearly independent columns of A. O

Example: Illustration of the above proof for the matrix

1 -2 1 4 =2
2 —4 3 8 -3
A=11 2 25 -1
1 -2 1 0 -2
we have that
B
—_—
A
C
1 -2 1 4 -2 1 1 4
2 -4 3 8 -3 2 3 8 1 =200 -3
= O 0 1 0 1
1 -2 2 5 -1 1 2 5 0 0 0 1 0
1 -2 1 0 -2 1 1 O
—~
by by b3

Inthiscasen =4, m =5and r = 3.

Definition 42 (rank of a matrix). The rank of a matrix A is the number of linear
independent columns of A denoted by rank(A).
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Example: For the matrix A from the previous example we have that the fol-
lowing linear dependence relations

-2
—4
-2
-2

+0 +0

— =N
— N W
O Ut 00 =

-2
-3
-1
-2

+0

e
P CRYJURS
O UL OO =~

and the only solution to

0

xr1 + To + X3

— =N
=N W
O Ut 0O W~

0
0
0

is
X1 0
T = 0
T3 0

which means that the matrix A has three linearly independent columns. In
terms of rows we have the following relation

row 3 row 1
—N— -3 ———
(]—7 _23 2; 57 _1) = T (1’ _27 ]-v 47 _2)

Tow 2

— N
+ (27 747 37 83 73)

row 4
-1 MmN
+— (17 727 17 Oa 72)
4
and the only solution to
(Oa Oa 07 0) 0) = (17 _27 1) 47 _2) Z1

(2, -4, 3,8, —3) 22
+ (17 727 17 07 72) Zr3

is

X 0
X2 = 0
I3 0

which means the matrix A has three linearly independent rows.
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Theorem 34. Suppose the rows (columns) of square A are linearly independent then
A can be written as a product of elementary matrices.

Proof. The columns of A form a basis for the n-dimensional vector space K". In-
deed if €; is not in the span of the columns of A = (¢, ...,¢,) then {¢1, ..., ¢y, €}
are linearly independent (why?), which means in K" we have found » + 1 lin-
early independent vectors contradiction with the fact that the dimension of
K" is a n. Therefore the standard basis can be represented as linear combina-
tions of the columns of A. We can solve AZ = ¢; so there exists ¢; such that
Ac; = €; and by setting B = (¢4, ...,,) we obtain that AB = I thus A is in-
vertible. Using the matrix representation of Gaussian operations we can write
A= B7! = E,, ... E; where each F; is an elementary matrix. O

Theorem 35. A system of linear equation Ax = b has a solution if and only if the
rank of the matrix of the system A equals the rank of the augmented matrix (A|b) or
rank(A) = rank(A|b).

Proof. By Theorem 24 Ax = b has a solution if and only if b is in the span of
the columns of A. By Theorem 25 the vector b is in span of the columns of A if
and only if the span of the columns of A and the span of the columns of (A|b)
are equal. Since the number of linear independent columns of a matrix is by
definition the rank of the matrix the result follows. O

Theorem 36. Ax = b has a solution if and only if ATy = 0= bTy =0

Proof. Let @; denote the ith column of matrix A thatis A = (dy, do, ..., dy).

[=] Theorem 24 then if Az = b has a solution then b is in the span of the
columns of A and therefore b = a;a@; + - - - and, for some constants s, ..., a,.
Let 7 be any vector such that 7 A = 0 this means that 37@; = 0 for all j
by properties of matrix multiplication. Then §7b = §7 (1@ + - - - + Qniin) =
a1yl + -+ apyld,) = a0+ +0a,0=0

[<] Assume ATy =0 = bTy = 0 then

(/b‘TT >y0¢>( AT )y =0

AT
bT
independent columns of B equals the number of linear independent columns
of AT. Indeed if the ATy = 0 then by our assumption By = 0. Thus for any
set of linear dependent columns of A” the corresponding set of columns of B
is also linearly dependent. So the number of linear independent columns of
B is less than or equal to the number of linear independent columns of AT.
On the other hand if a set of columns in A” are linearly independent then the
corresponding set of columns of B is also linearly independent as adding an

Let B = > In particular this means that that the number of linearly
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equation to a system of linear equation cannot increase the number of solutions
(and for linear independence we have only one solution namely all zeroes).
Thus the we have rank(A) = rank(AT) = rank(B) = rank(BT) = rank(B) =
rank(A[b) and by Theorem 35 the result follows. O
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Chapter 3

Linear Transformations

3.1 Basic definitions

Definition 43 (linear map). Let U and W be two vector spaces. A function ¢ :
U — W is linear map (homomorphism) if

1. Vi, v € U, ¢(i 4 v) = ¢(u) + $(V)
2. Ve e K,Vu € U, ¢(cil) = ci()
In this case U is called the domain and W is called the co-domain of ¢.
Theorem 37. ¢ is a linear map if and only if ¢(ati + V) = ap(u) + So(V).
Proof. Assume
Va, 3 € K, Vi, 7 € U, ¢(ail + B7) = ad(id) + Bo(7).
With o = 1and § =1 forall 4,7 € U we get
o(u+7) = o(lu+ 10)
= 19(d) +16(9)
= o(d) + ¢(v)

Thus the first condition of Definition 43 is satisfied.
With § =0and ¥ = @ for all 4,7 € U we get

olai) = ¢ (ai+0y)
(aii + 00y)
+ 0¢ <6U)
+ 0w

I
<

g

(0%
(0%

g

&(
&(
(1)

|
o}
ASS
£
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Thus the second condition of Definition 43 is satisfied.
For the converse assume

1. Vi, 7 € U, ¢l + 7) = ¢(@0) + ¢(7)
2. Ve e K, Vi € U, ¢(ctl) = cp()

then
plati+p0) = ¢ (o) + ¢ (B7)
= ag(d) + po (V)
Which completes the argument. O

We will use the condition in Theorem 37 as definition for linear map in some
of the arguments, without explicitly stating that it is equivalent to Definition 43.

Definition 44. [isomorphism] Let U and W be two vector spaces. A function ¢ :
U — W is an isomorphism between U and W if

1. ¢ is one-to-one and onto (correspondence)

(a) ontoVw € W, 30 € U : ¢(¥) =
(b) 1-1Vu, 7 e U,¢p(d) = p(¥) = u =10

2. ¢ is a linear map.
We write U = 'W if there is an isomorphism between U and W.

Definition 45. A linear map (homomorphism) from a vector space V to itself is called
a linear transformation.

Definition 46 (automorphism). An isomorphism from U to itself is called an auto-
morphism.

3.1.1 Note on terminology

Let ¢ : U — W then

homomorphism: also linear (map/function) ¢ (ot + 570) = a¢ (@) + ¢ (V);
transformation: U = W that is domain and co-domain are the same
isomorphism: ¢ is all of homomorphism, one-to-one and onto

automorphism: ¢ is both isomorphism and transformation
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3.2 Examples

3.2.1 Reflection

Reflection along the zy-plane.

Lo Lo
¢ 1 = 1
T2 —T2
Yo
Onto: Givenany | y; | the system of linear equations
Y2
1 0 0 o Yo
01 0 T | =1 N
0 0 -1 T2 Y2

always has a solution for example, so the map is onto.

Yo
One-to-one: Givenany | y1 | the system of linear equations
Y2
1 0 0 i)
01 0 1| = (Yo, Y1, Y2)
0 0 -1 T2

always has a unigue solution:

Zo Yo
Z1 = Y1
€2 —Y2

so the map is one-to-one.
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Linearity: We have

Ug

¢(ai+b0) = olal|l w | +0b

U2
aug + b’l)()

= ¢ auy + buvy
aug + bug

aug + bug
= auy + buvy
—aug — bug

]
= a U1 +b
— g

Ug

Vo
v1
V2

Vo
U1

Vo

= a¢ Uy +bo V1

U2

= a¢(@)+bo (V)

in other words

V2

¢ (ol +b0) = a ¢ (d) + b (V)

thus the function is a linear map.
This function is

. one-to-one
. onto
. homomorphism

1

2

3

4. linear transformation
5. isomorphism

6

. automorphism

With range diagonal matrices

If we have the map

i) Zo 0
o T = 0 1
X9 0 0

0
0
—

from R? to the set of 3 x 3 diagonal matrices, similar to the above the new func-

tion is
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1. one-to-one
2. onto
3. homomorphism
4. isomorphism
but it is not
1. linear transformation

2. automorphism

With range 3 x 3 matrices

If we have the map

o xg O 0
(b X = 0 X 0
T 0 0 —T2

from R? to the set of all 3 x 3 matrices, similar to the above the new function is
1. one-to-one
2. homomorphism
but it is not
1. onto
2. isomorphism
3. linear transformation

4. automorphism

3.2.2 Example: exponential coordinate

Ug eto
¢ U1 = U
U2 Uy + ug
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Ug
Onto: Given ( Uy ) from calculus e“° = —1 has no solution so there is no
U2

Uo
vector | wuy such that
(5]

thus the map is not onto.

One-to-one: From calculus e*° = y is one to one function. So if

eto
Uy = (yo» Y1, y2)
u1 + U2

has a solution, that solution is unique, so the map is one-to-one.

Linearity: We have

1 2
¢ (ail + bi) = ¢(2(0)+0<0))
0 0

in other words

¢ (ati + b7) # a ¢ (@) + b (V)
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thus the function is not a linear map.
This function is

1. one-to-one

not onto

not homomorphism

not linear transformation

not isomorphism

SR A

not automorphism

3.2.3 Example: polynomial coordinate

Uo (UO + 1)(UO — 1>U0
10} o = Uo
U2 Uy
Vo
Onto: Given | v from calculus 2 — & = ¥ is an onto function so for any
V2

Yo there is ug such that u — ug = yo and

Vo uo

-1
¢ U1 =1 »
V2 Y1

thus the map is onto.

One-to-one: From calculus 2®—z = y is not one-to-one function. For example

1 0 0
0 0 0

so the map is not one-to-one.
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Linearity: We have

1 1
¢ (ail + bi) = ¢(2(0)+o<0))
0 0

in other words
¢ (ati + bV) # a ¢ (@) +b¢ (V)

thus the function is not a linear map.
This function is

1. not one-to-one
. onto
. not homomorphism

2
3
4. not linear transformation
5. not isomorphism

6

. not automorphism

3.24 Polynomials to upper triangular matrices:

Consider the map from polynomials of degree two to upper triangular 2 x 2
matrices.

ug +ur —up +ug )

2 _
¢(1L2£C +u1x+u0)—( 0 g+ 2us
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Let S denote the following system of linear equations in matrix form

1 1 0 Uuop Yo
0 -1 1 Uy = Y1
1 0 2 Ug Y2

onto For any vector ( y8 zl ) the system of linear equations S always has a
2
Yo
solution for any values | y; | sothe map is onto.
Y2

Yo

One-to-one For any vector ( 0

:'Zl ) the system of linear equations S always
2

Yo
has a unique solution for any values | y: |so the map is one-to-one.

Y2

Linearity: We have

o (al +b0) = ¢ (a (uzx2 +uiz + uo) +b (’UQQ?Z + vz + UO))
= ¢ ((auQ + bug)x? 4 aug + bvg + (auy + bvl)x)

aug + auy + b’Uo + b’l)l —auy + aug — b’l)1 + b’UQ
0 aug + 2 aug + b'U() +2 b'UQ

( a(ug +u1) +blvg +v1) —a(ur — ug) — b(vy — vg) )
0 a(ug+2uz2) + b(ve + 2v2)

a (%) =+ uq —U1 + U2 + b Vo =+ 1 —V1 + V2
0 wg+2us 0 wvo+2v

= a¢ (uQ:c2 +urz + uo) + bo (’Ugfﬂz + vz + vo)

in other words
¢ (atl + b¥) = a ¢ (@) + b (V)

thus the function is a linear map.
This function is

1. one-to-one

2. onto

3. homomorphism (linear map)
4. not linear transformation
5

. isomorphism
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6. not automorphism

If in the above example we change the co-domain to the set of all square
matrices instead of upper triangular square matrices, the function will be

1. one-to-one
. not onto

. homomorphism (linear map)

2
3
4. not linear transformation
5. not isomorphism

6

. not automorphism

3.2.5 Example: My, 3 to M., matrices

Domain 2 x 3 matrices, co-domain 3 x 2 matrices

o = of(2 )

Yo Y1
= W= Y2 Y3
Ys Y5

ug+uz +us U —2us
= U073U1+2U3 2u1+u5
up +us —2ug 2u; —4us

Let S denote the following system of linear equations in matrix form

0 10 -2 00 Uy Y1
1 =30 200 ug | | w2
0 20 00 1 us | T s
0 1 1 -2 0 0 Uy Yy
0 20 -4 00 Us Ys
30
onto For vector | —2 0 | the corresponding system of linear equations S
0 1
1 0 1 0 0 1 Ug 3
0 10 -2 00 Uy 0
1 =30 200 u | | -2
0 2 0 0 0 1 us | 0
0 11 -2 0 0 Ug 0
0 20 -4 00 Us 1

has no solution, so the map is not onto.
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One-to-one For vectors

L (42 1 . (0 01
““\l1 0 -4 "“lo -5 0
we have

1 0
4 2 1 0 01
(G5 )=o) (0 50))
10 4 1 0 0 5 0
so the map is not one-to-one.
Linearity: We have
R o Up Ul U2 Yo U1 V2
¢ (ai 4+ b¥) = ¢(a< us wg s )—l—b( vs vy s ))

aug + bvg  auy +bvy  aus + bug
aus + bvs  aug +bvy aus + bus

¢
aup + aus + aus + bvg + bvs + bus auy — 2aus + bvy — 2bus
= aug — 3auy + 2aus + bvg — 3bvy + 2 bus 2auy + aus + 2bvy + bus
aul + aug — 2aus + bvy +bvy —2bvs  2au; — dauz + 2bvy — 4bus

a(ug + us + us) + b(vg + va + v5) a(u; — 2us) + b(vy — 2v3)
uo —3uy + 2usz) + blvg — 3vy + 20v3) a(2uy + us) + b(2v1 + vs)
) )

a(u; +ug —2ug) + b(vy +v2 —2v3) 2al(u; —2ug) +2b(vy — 2v3

Ug + Uz + Us U172’U43 Vo + V2 + U5 ’U172"U3
= a U0—3’LL1+2’LL3 2’Lbl+7.t5 +b 'U()—3’l)1+2’U3 2U1+U5
UL+ us —2us 2u; —4us V1 4+ v —2v3 2v; —4ws

- Uy U1 U2 Vo U1 V2
() ((n o))
in other words
¢ (a + b0) =a¢ (d) +bo (V)

thus the function is a linear map.
The above example is

1. not one-to-one
. not onto

. homomorphism (linear map)

2
3
4. not linear transformation
5. not isomorphism

6

. not automorphism
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With range 2 x 3 matrices

If the above example is modified to
Up Ur U2
()
— g=( Y Y2 W
Y Y3 Ys

N Uy + Uz +us ug—3uyr +2us up +us —2us
- U172U3 2U1+U5 2U174’U43

¢ (1)

the resulting map is
. not one-to-one
. not onto
. homomorphism (linear map)

1

2

3

4. linear transformation
5. not isomorphism

6

. not automorphism

3.3 Isomorphic Vector Spaces

Theorem 38. The representation map from a vector space V with basis B is a vec-
tor space with basis by, . .., bq to the vector space of standard column vectors with d
components K< is an isomorphism.

aq
RBZV*)Kd RB(ﬁ):RB(a151+~-+adgd):
(0% B
¢
Proof. onto Let : € K? consider 7 = cll;l 4+ +cdl;d. We have R (7) =
cd
C1
Cd
a1
1-1 Suppose Rp (i) = = : = Rp(V). Then 4 = 0151 4+ -+
aq
cabg = ayby + - + adb = 7.
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linear 1.

Rp(at) = RB(aclgl 4.+ ozcdl;d)
acy C1
= E =
QCq Cq
= aRB(U)
2.
Rp(@+7) = Rp ((61 + a1)51 + o4 (ca+ ad)l;d)
c1+a; c1 ax
= : = —|—
Cq + aq Cd aq

= Rp(d) + Rp(®)
O

Theorem 39. If ¢ : V — W is an isomorphism then ¢=* : W — V is also an
isomorphism.

Proof. An isomorphism is a correspondence between the sets so ¢ has an in-
verse function W — V which is also 1-1 and onto Since ¢ preserves linear
combinations, so also does ¢~!. Let w;,ws € W. Since ¢ is onto there are
U1, U5 € V such that W, = ¢(¥1) and Wy = ¢(¥2). Then

f e +eo-wa) = f e f(01) + o f(T))
= f_l(f(clﬁl +02172))
= 01171 + 02172
1 fTHW@) +ea - fTH ()
since f~1(w) = ¥y and £~ (Wa) = vo. O
Theorem 40. Isomorphism is an equivalence relation
Proof. reflexive identity map

symmetric by Theorem 39

transitive standard argument from calculus
O

Theorem 41. If two vector spaces are isomorphic then they have the same dimension.
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Proof. O

Theorem 42. If two vector spaces (over the same field) have the same dimension then
they are isomorphic.

Proof. by the representation map both are isomorphic to K¢, by transitivity
isomorphic to each other. O

3.4 Properties of linear maps

Theorem 43. For a linear map ¢ : V. — W we have that ¢(0y') = Oyy .
Proof. Self study. O

Theorem 44. If A is a linear transformation then it maps linearly dependent vectors
to linearly dependent vectors

Proof. Self study. O

Theorem 45. If A is a linear transformation then it maps spanning sets to spanning
sets.

Proof. Self study. O

3.5 Linear extensions

In a standard calculus course you learn that in the Euclidean plane given any
two points you can define a line. That is given two pairs of numbers you can
create a unique equation y = Az + B that describes a line. The same idea can
be generalized to linear maps. That is you can describe a linear map using
just the definition of the map on any basis. Comparing with the line example
you need the z-coordinates of the points are your basis and the y coordinates
help identify the coefficients A and B. For linear maps the z-coordinates are
the basis vectors, the y coordinates are the images of those x coordinates, just
as if you plug in the z value of a point P to the line equation you get the
corresponding y coordinates.

Theorem 46. A homomorphism is determined by its action on a basis: if V is a vector

space with basis by, . . ., b, and W is a vector space with elements iy, . . ., @, (perhaps
not distinct elements) then there exists a homomorphism from ¢ : V. — W such that

¢(b;) = w;, and that homomorphism is unique.

Proof. well-defined let ¥ € V and let ¥ = v; by + -+ vnl;n. Define the associ-
ated output by using the same coordinates ¢(¥) = v1W1 +- - - + v, Wy This
is well defined because, with respect to the basis, since the representation
of each vector ¥ in the domain is unique for any given basis.
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homomorphism This map is a homomorphism because it preserves linear com-
binations: where & = u1b1 + - - - + unb,, and ¥ = v1b1 + - - - + v, b, here is
the calculation.

p(su+tv) = ¢ ((3u1 + tv1)by + -+ + (sup + tv,L)E,L)

= (suj +tvy)g (51) + o+ (Sup +tog) g (gn)
= (suq +to) Wy + - - + (suy, + tv,)W,
s¢ (1) + ¢ (V)

unique This map is unique because if ¢ : V' — W is another homomorphism

such that ¢(b;) = @; for each i then ¢ and ¢ agree on all of the vectors in
the domain.

d)(ﬁ) = qg(clgl + -+ cngn)
= c10(by) 4+ cnd(by)

- cl’u_;l"f""'f'cnwn
= o)

They have the same action so they are the same function.
O

Definition 47. Let V and W be two vector spaces and let B = {51, ceey Ed} be a basis
for V. A function f defined on the basis B with f : B — W is extended linearly

to a function ¢ : V. — W if Vi € V with 4 = ull;l 4+ 4 udgd, the action of ¢ is
defined as
O(@) = ¢(urby + - + ughg) = ur f(b1) + - - + uaf (ba)

The function ¢ is naturally a homomorphism.

3.51 R? — R*example

Suppose you are given:

((5))

N~ O N
~
7N
VR
=)
~~
~
|

— = =
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then

Z1

((3)) = oC() (V)

for the vector ( o ) = ( g ) we compute
2
3

Note: in general we can extend any set linearly as long as within the domain
of the function f linearity is preserved:

2
1 0 0
(G)=1) ()
2
we can still linearly extend f since

(073)) = e(20) (V)

e
kﬁ
N
7N

|
SN
N~
~~_
Il
(el V]



However, if the following was given:

2

ORE
e

(V)=

#

e e
KH
7N
7 N\

|
NN
N~~~
~
Il

and the function cannot be linearly extended.

3.5.2 Msjsyo — Pg example

Let: f : M3><2 — Ps

0 —5
fllo o
0 1
0 1
fll oo
0 0
0 0
fll o =1
5 0
0 4
il 1o
0 0
0 0
oo
10
10
oo
10

225 + 224 + 1823 + 1422 +42—2

523 — 22 +1

392° +152* — 3622 + 7422 + 382 + 16

22+t —2423 +2+6

62°+32* —523+ 1522+ 72+ 3

32°+322—323+152°+62+3
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Uo

Uyq

Uy
us
Us

-3

-1
—2

= —(Bup+2uz +9uz — 6uy — 2us)z’ + (ug + 3ug + 2us)r?

+(2uo — 5uy —4ug + 11 uz — 5uy — 7us)a®
—(uy — 4uy —uz — 15uy — Yus)z?
—(up —ug +3us — Tug —4dus)xr +u +2us —uz +3ug + 3us

= 902° +242* — 682> +1202° + 702 + 24

= 4925 +222% — 7023 + 104 2% + 53 x + 28

3.53 P3; — Mjyys example

Let

1@ = (5 )

Pearoren = (79 29)

fy = (i’ _2)

Extending linearly we have

10} (uQx2 +urz + uo)

Sug —up + 8us UL — dug
ug +us —4ug—4ur + 16 us

sy = (0D

¢(142° + 32— 13) = <70 _67>

1 264
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3.6 Rank nullity

Theorem 47. Under a homomorphism, the image of any subspace of the domain is a
subspace of the co-domain.

Proof. Let S be a subspace of ¢ : V.— W. Then ¢(5) is non-empty because of
the zero vector Oy . If ¢(@) and ¢(7) are in the image of ¢(5) then ¢(ad + b7) is
also in the image image of ¢ since ai + bbe S by the closure of S O

Definition 48. The range space of a homomorphism ¢ : V. — W is defined as
R(¢) = {s(v) | 7€V}
The dimension of R(9) is called rank of ¢.

Example: for the linear extension ¢ in Section 3.5.3.

v - (5 0)(70 ()
- (0 =) (T )

its rank is two.

Examples:

1. derivative transformation {1, x, 22} from P3 to P3 has rank two as the
image of the derivative is the set of all linear polynomials.

2. derivative transformation ({sin z, cos x}) has rank two as the image of the
transformation is all of the span of the two functions.

3. derivative {z,sinx, cosz} image is {1,sinz, cos 2} the rank is three as the
image of the transformation is all of the span of {1,sinz, cosx}

4. Example in Section 3.2.5 has rank three.

Theorem 48. For any homomorphism the inverse image of a subspace of the co-domain
is a subspace of the domain.

Proof. Let¢ : V. — W be ahomomorphism and let T be a subspace of the range
space of ¢. Consider the inverse image of T. It is nonempty because it contains
Oy, since qS(GV) = Oy and Oy is an element of T as T is a subspace. To finish
we show that ¢~!(T) is closed under linear combinations. Let #; and ¥, be two
of its elements, so that ¢ () and ¢(@5) are elements of T. Then ¢, 7} + co¥> is an
element of the inverse image ¢! (T) because ¢(c17 +cata) = c1¢(T1) +c20(T2)
is a member of T. O
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Example: for the linear extension ¢ in Section 3.5.3.

(2 —1,-42” —z+4) = ¢! (<(
{1

= (((G )2

Definition 49 (kernel, null space). The null space or kernel of ¢ : V. — W is

Il
<
L
S
S
7N

O Ul = W O ut
\

O U O O WLt
~~_
\/
N~

ker (¢) = {7 € V | ¢(&) = Ow .
The dimension of ker (¢) is called nullity of ¢.

The kernel may be denoted as ¢! (6) or N (¢).

Example for the linear extension ¢ in Section 3.5.3.

ker () = ¢‘1(<(8 8)>>

<—m2—5x+1>

it has nullity one.

Example the null space of the derivative operator is the set of all constants
and it has nullity one.

Theorem 49. Let ¢ : V. — W be a linear map. Then dim V equals the sum of the
nullity of ¢ plus the rank of ¢

dimV = dim R(¢) + dim N (¢)

Proof. Let ¢ : V. — W be linear and let By = {51, o ,ﬁk} be a basis for the
null space. Expand that to a basis By = {51, ot By B}CH, ol En} for the entire
domain. We shall show that Bg = {¢(Bx41), - . ., #(F,)} is a basis for the range
space. Then counting the size of the bases gives the result.

To see that Bp, is linearly independent, consider

Ow = c10(Brs1) -+ ad(Bn) = dlcri1Prsr + -+ + enBy)

and so ck+16}€+1 4+ cngn € N¢. As By is a basis for the null space there
are scalars ¢y, . . ., ¢ satisfying this relationship.

C151 + ek = Ck+1gk+1 + -4 cnfn
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equivalently

1+ F e — Cop1Bre1 — - — CufBn = 0y

But this is an equation among members of By, which is a basis for V, so each
¢; equals 0. Therefore Bp, is linearly independent.
To show that Br spans the range space consider a member of the range

space ¢(¥). Express ¥ as a linear combination ¢ = ¢; ﬁl +-+en ﬁn, of members
of By . This gives

o(0) = ¢(C151 o B+ CkJrl(ngrl) +eee Cn(gn))
= ad(B) + + cwd(Br) + cra10(Brsr) + - + cnd(Br)
= alw + -+ xlw + cr10(Ber1) + -+ + cnd(Bn)
= Crr10(Brar) + o+ cad(Bn)

and since /i, . .., B are in the null space, we have that h(?) = Ow + -+ 0w +
ck+1h(gk+1) + e+ cnh(gn) Thus, h(7) is a linear combination of members of
Bpg, and so By spans the range space. O

3.7 Matrix representation of linear maps

Question: How to describe compactly linear transformations?

http://dev.w3.org/csswg/css3-3d-transforms/

matrix3d(<number>,<number>,<number>,<number>,<number>,<number:>,
<number>,<number>,<number>,<number>,<number>,<number>,<number>,
<number>,<number>,<number:>)
specifies a 3D transformation as a 4x4 homogeneous matrix of 16
values in column-major order.

Definition 50. Suppose that U and W are vector spaces of dimensions n and m with

bases B = (51,52,...,5n) and E = (€1,€a,...,8p), and that ¢ : U - W isa

linear map. If

hl,l hl,n
- h2,1 - h2,n
Re(o(br)) = : Re(o(bn)) = ;
hm,l E hm,n E
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then

Ro-e(@) = | Re(o() Re (o)) ... Re (o)
| | |
hii hig - hip
hoi  hap -+ han
hm,l hm72 o hm,n B—E

is the matrix representation of ¢ with respect to B — E.

3.71 d: P; - P,

Let d : P3 — P5 denote the derivative function, where P3 the vector space of
polynomials of degree at most three and P, is the vector space of polynomials
of degree at most two. For basis given below find the matrix representation of
d from basis Bp, to basis Bp, i.e.,

RBP3 —Bp, (d)

Bases B —+ E
Given P3 = (B) = <50,51,52753> where

by = 1
b = =
by = a2
by = a8

and Py = (F) = (€p, €1, €2) where

oL
|

For basis vector by, we compute

d(1) = 0
= X0€ + T1€1 + T262

0

= 0éy + 0€1 + 0&y = 0

0
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where the coordinates are obtained by solving

100 T 0
0 1 0 z1 | =10
0 0 1 T2 0

For basis vector 51, we compute
d(z) = 1

= T0€ + T1€1 + T2

1
= 1lép +0ée; + 0ey = 0
0/ 5
where the coordinates are obtained by solving
1 0 0 o 1
01 0 1 =10
0 0 1 To 0
For basis vector 52, we compute
d (acQ) = 2x
= € + T1€1 + T2E>
0
= 0ép +2¢€1 +0ey = 2
0/ g
where the coordinates are obtained by solving
1 0 0 o 0
0 1 0 1 =1 2
0 0 1 To 0
For basis vector 53, we compute
d (acS) = 322
= 20€p + x1€1 + 122
0
= 0éy + 0¢e1 + 3¢5 = 0
3 )k
where the coordinates are obtained by solving
1 0 0 o 0
0 1 0 1 =10
0 0 1 To 3
Solution is
01 00
Rpse(d)= 0 0 2 0
00 0 3
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Bases B — G
Given P3 = (B) = <50,51,52753> where

o = 1
b = =
by = a2
by = a8

and Py = (G) = (g1, g2, §3) where

Go = *+z+1
G = 2"+
g =

For basis vector by, we compute

d(l) = 0
= 2oGo + T1G1 + 2G>
0
= Ogo + 0{71 + 0{72 = 0
0 /¢
where the coordinates are obtained by solving
1 0 0 To 0
1 1 0 T = 0
1 1 1 To 0
For basis vector 51, we compute
d(z) = 1
= 200+ T1G1 + 2G>
1
= 1lgo—1G1+0g=| -1
0 /¢
where the coordinates are obtained by solving
1 0 0 o 1
1 1 0 T = 0
1 1 1 To 0
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For basis vector 52, we compute
d (1’2) = 2z
= oGy + 211 + T2G>

0
= 0go +2G1 — 2G> = 2
-2 G
where the coordinates are obtained by solving
1 0 0 i) 0
1 1 0 T = 2
1 1 1 To 0
For basis vector 53, we compute
d (:c‘j) = 322
= Zogo + 161 + T2g2
0
= Og} + O§1 + 3§2 = 0
3 /)¢

where the coordinates are obtained by solving

1 00 Zo 0
1 1 0 T = 0
1 1 1 To 3
Solution is
0 1 0 0
Resg(d)=| 0 -1 2 0
0 0o -2 3

Bases A — F

Given P3 = (A) = (dy, d1, @2, a3) where

Gy = —-a224222+2x+1
i = 3+12-2

iy = 2°+4322+32+2
s = 2+224+z+1

and Py = (E) = (&, €1, &2) where

o S
I

N
|
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For basis vector dy, we compute

d(—z®+22°+22+1) = —32°+4z+2
= 20€p + x1€1 + X265
2
= 26y +4e; —3ey = 4
73 5
where the coordinates are obtained by solving
1 0 0 o 2
01 0 T = 4
0 0 1 To -3
For basis vector d;, we compute
d(x3—|—x2 —2) = 32242z
= Z0€) + T1€1 + 226
0
= 0&y+2&; + 3¢5 = 2
3 )k
where the coordinates are obtained by solving
1 00 x 0
0 1 0 T = 2
0 0 1 To 3
For basis vector dz, we compute
d(z®+32>+32+2) = 32°+62+3
= 20€p + x21€1 + X262
3
= 3éy+6€e1 + 3¢ = 6
3 )k
where the coordinates are obtained by solving
1 00 Z 3
0 1 0 T = 6
0 0 1 To 3
For basis vector a3, we compute
d(x3+x2—|—x+1) = 322422 +1
= 20€p + 21€1 + X025
1
= 1lép+2€) +3e = 2
3/)k
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where the coordinates are obtained by solving

1 0 0 o 1
01 0 o | =1 2
0 01 T 3
Solution is
2 0 3 1
Rasp(d) = 4 2 6 2
-3 3 3 3
Bases A -+ H
Given P3 = (A) = (dy, d1, @2, d3) where
iy = —-a2*4222+42x+1
i = 23+12°-2
Gy = 2°+32°4+3x+2
;s = °+22+z+1
and Py, = (H) = <H0,H1,H2> where
ho = 32°+2z+4
77:1 = 2242243
EQ = z+1

For basis vector dy, we compute
d(—x3+2x2+2x+1) = —32°+4zx+2
= xoﬁo +$1E1 +$2E2

-1
= —1504—0}_{1—}—652: 0
6/ u
where the coordinates are obtained by solving
4 3 1 o 2
2 2 1 T = 4
3 1 0 To -3
For basis vector d;, we compute
d(m3+m272) = 322422
= :L‘()Eo + l‘lﬁl + .TQHQ
. . . 5
= b5hg — 12hy + 16hy = —12
16 /) .
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where the coordinates are obtained by solving

For basis vector d», we compute

4 3 1
2 21
31 0

d(x3+3ac2+3x+2)

where the coordinates are obtained by solving

For basis vector d3, we compute

where the coordinates are obtained by solving

Solution is

4 31
2 21
31 0

d(a® + 2> +z+1)

4 31
2 21
310

Ra—m (d) =

Zo
Mo
T2

322 +6x+3
onf_io + $1E1 + $2ﬁ2

6ho — 15hy + 24hy =

322 4+2x+1

xoﬁo + $1E1 + 30252

4]_'[0 — 9]_7:1 + 12}_7:2 =

Zo
r
T2

-1
0
6
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—12
16

6
—15
24

4
-9
12

6

—15

4
-9
12

24

H

H



Combining it together

Consider now the polynomial and its representation is various basis

P o= plx)=—2+32%+1

1

0

Re (@) = 3
-1/,

18

3

Ra(®) = 925
39 ),

For its derivative

Il
o

R (d(p))

Ra (d(p) = 6

3
Ru(d@) = [ 12 )

Then
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R (d(p)) = Rp—e(d)Rs (P)

o O O
O O =

o o

Rea (d(P)) = Resa(d)Re (P)

RE (d(p)) = Rase(d)Ra (P)

E
3
—12
24 ),

-1
0
6

Ru (d(p)) = Ra—su(d)Ra (p)

(

3.7.2 M2X2 — P2
Problem: Let ¢ : Msyo — P5 be defined as

“((

Given M2><2 = <B>

Uo
U2

Uy
u3

o 01
= (50)
o -1 1
= ()
o 0 -3
e ()
> 0 0
bs = (1 0
Given P, = (D)
dy = —22°+1
Jl = 222 —z—1
dy = —2?+1
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2 0 3
0 3 B—FE —1 B
0 0 (1)
2 0 3
-2 3 B—G —1 B
31 1§
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5 6 4 12
—-12 —-15 -9 _95
16 24 12 AH 39
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Find the matrix representation of ¢ from basis B to basis D i.e.,

RB—>D(¢)

Solution: For basis vector by, we compute

¢(<g é)) = 82’44z —2

= -TOJ;) + 9616?1 + iCzd_;

. . B —-10
= —10dp — 4dy +4dy = —4
4 /b
where the coordinates are obtained by solving
1 -1 1 Zo -2
0 -1 0 Iy = 4
-2 2 -1 T2 8
For basis vector 51, we compute
-1 1 _ 2
(;5(( 2 0 )) = 1lz°+5x—-2
= xoc% + 1‘10?1 + 332672
B . . —14
= —14dy — 5dy + Tdy = -5
"Jp
where the coordinates are obtained by solving
1 -1 1 i) —2
0 -1 0 x| = 5
-2 2 -1 T 11
For basis vector 52, we compute
0 -3 _ 2
(2 1)) = e
= Sﬂojo + 11651 + x2£2
B . B 26
= 26dy + 11d; — 9do = 11
-9/,

where the coordinates are obtained by solving

1 -1 1 o 6
0 -1 0 | =] -11
-2 2 -1 T2 —21
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For basis vector b3, we compute

o((95)) = r+e

= wod_)o'ﬁ"ffﬂﬂ-%xzd_‘z
~ . -1
= —1ldy—1dy —1ldy = | -1
—1

where the coordinates are obtained by solving

1 -1 1 o —1
0 -1 0 | = 1
-2 2 -1 To 1

Combining together the representation is

~10 -14 26 -1
Rpop@) = -4 -5 11 -1
4 7 -9 -1

3.7.3 P2 — DQ

Problem: Consider ¢(-) : P, — D, with domain polynomials of degree at
most two P3 and range 2 x 2 diagonal matrices D, defined as:

2 ug — 3us 0
¢(u2$ +u1x+u0): ( 0 —u )
For basis B
50 = 3z22+z
51 = -8 .’E2 —3x
by = 1
and basis D

7 -1 0 7 2 0
(T o) a5 1)
Find the matrix representation of ¢ from basis B to basis D i.e.,

Rp-p(9)
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Solution: For basis vector @y, we compute

-9 0
orten — (1)
= IOd_E)+xljl

- 11@“@(1})
D

where the coordinates are obtained by solving

(o) ()-(3)

For basis vector d;, we compute

24 0
¢(—8x2—3x) = ( 0 3>
= IOJOJFxl(Il

= —30%—3(ﬂ_<_3g>
o D

where the coordinates are obtained by solving

(o)) =(%)

For basis vector dz, we compute

(00)

= Z‘OJO + $1621

—1dy + 0d; = ( (1))
D

where the coordinates are obtained by solving
-1 2 o _
0 -1 I -
1 =30 -1
RB—p ((rb) = ( 1 -3 0 )

3.7.4 M2><3 — M2><3

The following function is a variant of the linear map from §3.2.5

¢ (1)

Solution is

¢ Maysz — Moxs
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defined as

ug U1 Ug + Uz + Us Uy — 2’LL3
10} Us U3 = ug — 3u +2us 2u1 + us
Ug Us UL+ us —2uz 2u; —4us

Problem: for basis B

) 10
by = [0 0
00
} 0 1
b = |00
0 0
. 0 0
by = [ 10
0 0
. 0 0
by = [0 1
0 0
. 00
by = |00
10
. 0 0
bs = |00
01

find the matrix representation of ¢ from basis B to the same basis B.

Solution: For basis vector by, we compute

10 10
¢ 0 0 10
0 0 0 0

1

= .23050 + ZL‘151 + 33252 + 1‘353 + .1‘454 + x5b

1bo + 0b1 + 1bs + Obs + 0by + 0by =

OO OO = O
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where the coordinates are obtained by solving

SO O OO

[eNeoNoNelN =

For basis vector b, we compute

<
o oo

OO

where the coordinates are obtained by solving

SO OO O

N eBoBelN "

For basis vector by, we compute

<
[l

o O O

0 0 0 O o 1
0 0 0 O 1 0
1 0 0 0 To B 1
0 1 00 T3 1 o0
0 010 T4 0
0 0 01 Ts 0
0 1
-3 2
1 2
= xogo + xlgl + J'3252 + 33353 + :(:454 + a:555
0
1
050 + 151 - 352 + 253 + 154 + 255 = _g
1
2
0 0 0O o 0
0 0 0O T1 1
1 0 0 O To B -3
01 00 T3 - 2
0 01 0 T4 1
0 0 0 1 Ts )
1 0
0 0
1 0
xOgO + $151 + $252 + $353 + .1‘454 + m555
1
0
1by + 0by -+ Oby + Obs + 1by + 0bs = 8
1
0
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where the coordinates are obtained by solving

SO O OO

[eNeoNoNelN =

For basis vector b3, we compute

<
o oo

o = O

0 0 0O T
0 0 0O 1
10 00 T2
01 00 3
0 01 0 T4
000 1 s

0 -2

2 0

-2 -4

O = OO o

= .Tog() + .1‘151 + 56252 + I353 + .5(1454 + 33555

0bo — 2by + 2by + Obg — 2by — 4bs =

where the coordinates are obtained by solving

SO OO O

N eBoBelN "

SO~ OO

SO = O OO
O = OO OO
_ O oo oo
8
N

For basis vector b4, we compute

<
— o o

o O O

0 0
0 0
0 0

-2

-2
—4

0
-2
2
0
-2
—4

xogo + Ilgl + xggg + $353 + .1‘454 + $5g5

0bo + 0by + Oby + 0bs + 0by + Obs =

137

OO OO OO



where the coordinates are obtained by solving

1

o O O oo

0

oo oo

0

[leNell -]

0

OO = OO

0

o= O OO

For basis vector b5, we compute

0 0
ol 0 0
0 1

zodo + x1dy + wody + 3ds + wady + 5

1dy + 0dy + 0dy + 1ds + 0dy + 0ds =

1

0

0 1
0 0

0

o O oo

Zo
z1
T2
T3
Ty
Zs

where the coordinates are obtained by solving

1

oo o oo

Solution is

0

oo oo

0

OO o+ O

0

OO = OO

Rp-(¢) =

3.8 Change of basis

0

o= O OO

SO OO = O

0

_— o o oo

=N W— O

o= OO O

Zo
T
T2
z3
Ty
Ts

-2

-2
—4

[ecilen i en I en B e B @)

SO OO

(e el e e M e M e}

SO = OO

!

(=Nl eoNel

Definition 51. The change of basis matrix for bases B, A C 'V is the representation

of the identity map id : V. — V with respect to those bases.

|
RB%A(¢) =
|

Ra(by) Ra(bo)

RA (gn)
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is the matrix representation of ¢ with respect to B — A.

3.8.1 P3 — P3

Using P35 basis from Section 3.7.1, given P35 = (B)

and P3 = (A)
dg =
a, =
ay =
as =
Bases A — B

For basis vector dy, we compute

id(fx3+2x2+2z+1)

[V

8 8 8 =

w

—23 4222+ 22 +1
22 —2

22+ 322 +3z+2
B2+t +ar+1

— 234222422 +1

1'050 + xlgl + xggg + xggg

where the coordinates are obtained by solving

0 0

oo o

1 0
0 1
0 0

For basis vector d;, we compute

id (:1:‘3 N 2)

1
s s o 2
= 1bg + 2b1 + 2bs — 1b3 = 9
—1 B
0 o 1
0 T1 . 2
0 To o 2
1 T3 -1
23422 -2
1’050 + 35151 + 1’252 + (Eggg
-2
T 0
—2by + 0by + 1bg + 1b3 = 1
1 B
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where the coordinates are obtained by solving

1 0 0 0 T -2
0100 xn | | o
0 0 1 0 To o 1
0 0 0 1 T3 1
For basis vector d», we compute
id (2° + 32> +32+2) = 2°+32°+32+2

= xogo + 1‘151 + $262 + 1‘353

= 2by + 3b1 + 3by + 1b3 =

where the coordinates are obtained by solving

100 0 0 2
0100 o | |3
0010 z | T 3
000 1 3 1

For basis vector d3, we compute

2t +r+1

id($3+x2+x—|—1)

= Cﬂogo + $151 + $252 + 55353

1o + 16y + 1by + 1bs =

where the coordinates are obtained by solving

1 0 0 O To 1
0100 o |1
0 0 1 0 To o 1
0 0 0 1 T3 1
Solution is
1 -2 2 1
2 0 3 1
Ra-p = 2 1 31
-1 1 1 1
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Bases B —+ A
For basis vector I;O, we compute
id(l) = 1

= xodo + 2101 + T2d2 + T3d3

= 2dy + 0dy — 3ds + bds =

where the coordinates are obtained by solving

1 -2 2 1 o
2 0 3 1 o |
2 1 3 1 T | T

-1 1 1 1 T3

For basis vector 51, we compute
d(z) = =z

= xodo + 101 + T2d2 + 303

oo o

where the coordinates are obtained by solving

1
2
2
-1

For basis vector by, we compute

id (x2) =

where the coordinates are obtained by solving

1
2
2
-1

—6dy — 1d, + 9dy — 14d3 =

-2
0
1
1

1,2

l‘()(?io + Ildl + Igﬁg + 1'363

5dg + lay — Tds + 11ds =

-2
0
1
1

— W W N

_ W W N

—_ = = =

— = =
]
)
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For basis vector b3, we compute

z‘d(x?’) = 23

= xodo + 2101 + T2d2 + 303

= —ldp+0d; + ldy — lds =

where the coordinates are obtained by solving

1 -2 2 1 To
2 0 3 1 X1
2 1 3 1 To
—1 1 1 1 T3
Solution is
—6 5
0 -1 1
RB*)A_ _3 9 _7
5 —14 11
Important observation
1 00
010
RpsaRasp = 00 1
0 0 O

3.8.2 P2 — PQ
Using P basis from Section 3.7.1, given Py = (E)

€o 1

e =

& = a?

andP2=<G>

S 2
go = z0+x+1
G = 24z
G =
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and Py = (H)

Eo = 322422 +4
El = 22422+3
EQ = {Ii—f—].

Bases £ — G

For basis vector €, we compute

id(1) = 1
= xoJo + T1G1 + T2G>
1
= 1go—151 +0go = -1
0/¢a
where the coordinates are obtained by solving
1 0 0 Zo 1
1 1 0 T = 0
1 1 1 To 0
For basis vector €1, we compute
id(z) = zx
= 2oJo + 21G1 + 2G>
0
= 0go+1g1 —1go = 1
71 G
where the coordinates are obtained by solving
1 0 0 o 0
1 1 0 T = 1
1 1 1 To 0
For basis vector €5, we compute
id (xz) = 22
= zogo + T101 + T2G2
0
= 0Go+0g1 +1go=1 0
L/ g
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where the coordinates are obtained by solving

Solution is

Bases G — F

For basis vector gy, we compute

id (1:2 +x

1 00 Zo 0
110 x| =10
111 o 1
1 00
Rgse=| -1 10
0 -1 1
+1) = 2°+a+1

= € + T1€1 + T262

= lép+1léey + 1léx =

where the coordinates are obtained by solving

For basis vector gi, we compute

id (x2 +

100 Zo 1
0 1 0 z1 | =11
0 01 T2 1
x) = 2%+z

$0§0 + xlél + 33252

0ep + 1€1 + 1z =

where the coordinates are obtained by solving

1 00 Z 0
01 0 | =11
0 0 1 o 1

For basis vector g2, we compute

id (x2)

.’L‘2

To€o + X1€1 + 2o

0ép + 0e + lés =
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where the coordinates are obtained by solving

1 00 Z 0
0 1 0 1 =10
0 0 1 To 1
Solution is
1 00
Raog = 1 1 0
1 1 1

Note that the systems of linear equations are trivial to solve so getting the
matrix representation G' — E is trivial. We still have

ReseERE—c =1

Bases H — E

For basis vector hy, we compute

id(32° +2x+4) = 32*+2x+4
== Ioéb +£L‘1€1 +Z‘2€2
4
= 4éy+2¢ +3e; = 2
3 /)
where the coordinates are obtained by solving
100 Zo 4
010 1 | =1 2
0 01 T2 3
For basis vector i_il, we compute
id (2> +2x+3) = 2*+22+3
= o€y + T1€1 + T2
3
= 350 + 251 + 152 == 2
1/ g

where the coordinates are obtained by solving

1 0 0 T 3
0 1 0 T = 2
0 01 T2 1
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For basis vector hy, we compute

idlx+1) = z+1
= Zo€) + T1€1 + T2€2
1
= leg+1e1+0e = | 1
0/ &
where the coordinates are obtained by solving
1 00 xg 1
010 z1 | =1
0 0 1 T2 0
Solution is
4 3 1
Reseg=1| 2 2 1
310
Bases ¥ — H
Given the previous observation
Rg-eRg—a =1
to compute
RE=H
we simply need to find the inverse of matrix
4 3 1
Rusg=1 2 2 1
3 10
which is
-1 1 1
Re—H = 3 -3 -2
-4 5 2
Alternatively we can go the “long way”: for basis vector €,, we compute
id(1) = 1
= @o€p + 21€1 + 262
-1
= —léy + 31 —4éey = 3
-4/,

where the coordinates are obtained by solving

4 3 1 Zo 1
2 21 T = 0
31 0 T2 0
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For basis vector €7, we compute

id(z) = =
= g€y + T1€1 + T2€5
1
= léy—3€1+58 = -3
/)&
where the coordinates are obtained by solving
4 3 1 xo 0
2 21 z1 | =1
3 10 T2 0

For basis vector €5, we compute
id (xZ) = 22

= 20€) + 11 + T2€o

= 160 — 261 + 262 ( -2
2 E

where the coordinates are obtained by solving

Solution is

—1 1 1
RE—H = 3 -3 -2
—4 ) 2

Bases H — GG

At this stage we will not go the long way. We already know Ry, and Rp_.q.
Naturally

RH_>G = RE—>GRH—>E
1 0 0 4 3 1 4 3 1
= -1 1 0 2 21 = -2 -1 0
0 -1 1 3 10 1 -1 -1
Bases G — H

As in the previous section we either compute

Resu =ReE-suRGa—E
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which we already have computed or we fine the inverse of

RH*}G
in either case we get
1 2 1
Rasup=| —2 -5 -2
3 7 2

3.8.3 Invertible matrices

In the above examples if we want the matrix of the identity transformation
Rc—r we solve a system of linear equation A% = b. If we want to get Rr_.c
then we solve a system of linear equations that is BZ = ¢ and their relation is
that AB = I. For any invertible matrix A we can do that. And anytime we have
a change of basis matrix its columns (and rows) must be linearly independent
so the matrix is invertible. This is the underlying statement of the following

Theorem 50. A matrix changes basis if and only if it is non-singular.

3.8.4 Matrix multiplication

The above Theorem 50 is for change of basis but if we combine change of ba-
sis with matrix representation of linear transformations we get the following

picture:

Vs — ¢sp — Wp

\ 4
idB*)E idD—)C
\ X

Ve —= ¢gsc — Wg

For example for the derivative map from Section 3.7.1 we know

Rp—E,RBpsc,Ra—e,Rasm
from Section 3.8.1 we know
RA*)B» RB—)A

from Section 3.8.2 we know

Re-c Re—E, REe—~H,RH~E, RHE~0G, Ra—u

Suppose we did not know R 4_, g but we knew
* Rp. g (very easy)

* Ra_p (Very easy)
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* REg_ g some computations

then to compute R 4_, iy we need to use

Rasn =ResaRB-oERA-B

which is just multiplication of matrices. So what is R 4_.¢? We use

Rasc = RescRBseRass
2 0 3 1
= 2 2 3 1
-7 1 -3 1
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Chapter 4

Determinant

4.1 Definitions and properties
Definition 52. A n x n-determinant is a function
det : Mpuxn = K

such that
det(EA) = det(E) det(A)

for an elementary row operation matrix E and any matrix A, with E; A € My xn.
Furthermore

1. det(E) = 1 if E is linear combination;

2. det(E) = —1if E is a swap;

3. det(E) = k if E is rescaling;

4. det(I) = 1 for the identity matrix of order n.

We often write |A| for det(A). Let the vectors g’ represent the rows of the
matrix. The conditions then are written as:
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Row combination det

1 0..
0 ...0 0 O
det 0 ...0 k£ O
0 ...0 0 O

[\o o..

For example:

5 -8 1
det [ 0 —F 2
—4 7 -1

o

pi
=det | p; +kp; |fori#j
p;
Pn
00 Ao\ ] 1
00 ..00 Pi-1 pi
10 ...00 pi =det | pj+kpj
01 ..00 Pit1 pi
0 1 pn /] Pn
100 5 -8 1
det -2 10 3 -5 1
00 1 -4 7 -1
100 5 -8 1
det [ =2 1 0 |det 3 -5 1
00 1 -4 7 -1
=1
5 -8 1
ldet [ 3 —5 1
-4 7 -1
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fori # j

—
p’rl

= —det

Swap det

- i i - >
N
g
|
[

T 1
— — — —
o gt e bk e
e} o O O —
(e} o O O : o

o - O
o O O
[esRN el
o O O
— O O
o O -
o O O
— O O
o - O
: oo o :
s ; coo =
— o O O o O O o
1
g

For example:

-8
)
7

(.
X

o O -

— O O

o — O

) -

1
1
1

)
-8
7

3
)
—4

det (

-8
)
7

)
3
—4

o O

— O O

S —= O

= det(

5
3
-4

—1det (
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Rescaling det | kp;

det 0

For example:

5
det | —15
—4

Theorem 51.

Proof.

p1

oo |

-8

o O

1

25 =5
7 -1

=kdet | p;

O FTTO -

for any scalar &
Pn
1
0 ...0 0 Pi—1
0 ...0 0 Pi
1 .00 Fist
.01 Pn
1 0 0
= det 0 -5 0
0 01
1 00
= det| 0 =5 0 |det
0 0 1
-8
= —bdet =5
7

Condition 1 and Condition 3 imply Condition 2.

pi + 7
Pit1

153

pi + P
Pi+1

Pj+1

—
pTL

f1

Pi-1

Pit1

Pn

5 -8 1

3 —5 1

—4 -1
-8
-5
7
P1
Pi-1

pi+ 0y~ i
Pi+1
Pj—1
—Pi
Pj+1
Pn




Swap (as a matrix) equals the product of linear combinations and rescaling.

For example:

S = O~

o o~ O

o —H O O

oo H O

SO O

— o O O

So if we apply the above matrix equality to determinants we get

—6 3
0 -2
-1 0
5 —1

—6
-5
-1

0

—6

0
-1
-5

—6
-5
-1

0

-2
0
0
-2

det (
(—1) det (
(—1) det (
(—1) det (

—6 3
-5 -1
-1 0

5 —1

—6
)
-1

0

-2
-2
0
2

g

O - O —

oo —H O

O — O O

— O O O

) = (—1)det (
) = (—=1)det (
) = (—1)det (

-6 -6 3
) 0 -2
-1 0

5 —1

-1
0

-2
0
0
2

3
-1
0
-2

-2 -6 —6

-2 -5 -5

det 0 -1 -1

0 -5 0

)det(

—6
-5
-1
0

-

linearly dependent.

oo O -

S o —H O

SO~ O

— O O O

-6 —6 3
-5 -5 -1
-1 -1 0

0 5 —1

-2
-2
0
2

™M — O AN

-6 —6

0 -5
-1 -1
) 0

-2
-2
0
0

O —A O —

oo —H O

o — O O

— O O O

-6 —6 3
-5 -5 -1
-1 -1 0

0 5 —1

-2
-2
0
2

2 -6

-2 0

(—1)det 0 1
0 -5

= det(

Theorem 52. If a matrix A has a row of zeros then det(A) = 0.

3
1
0
-2

-6 -6

0 -5
-1 -1
-5 0

—2
-2
0
0

o —-H O O

o O —H O

o o O -

— o O O

Proof. Use scalar multiplication property with & = 0.

-\ pn are

P,

0 if and only if

Theorem 53. det(A)
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Proof. Suppose that p', ..., p, are linearly dependent. Then there exist coeffi-
cients not all zero such that

a1pr + -+ anpn =0
let oy, # 0. Then

— — — —

1 P1 P1 P1
apdet | gk =det | agpk =det | agpr + Z?:L#k ;i Py = det 0
Pn Pn Pn Pn

Since a4, # 0 it follows that the determinant is zero.

Assume now the rows are linearly independent (and so are the columns).
By Theorem 6 using the matrix representation of Gaussian operations we can
write A~! = E,,, ... E; where each E; is an elemetary matrix and all scaling
operations do not involve a scaling by zero. Then

1 =det(I) = det(A™*A) = det(E,, ... E1A) = det(E,,) ...det(E;) det(A)

since the right hand side is non-zero the left hand side is also non zero; and
therefore det(A) # 0.
O

On the one hande if we have an invertible matrix (i.e., rows are linearly
independent) the matrix is a product of elementary matrices with no scaling
by zero for example:

0 1 -3 1 00 1 -3 0 1 00
0 0 1 = 0 10 0 10 0 01
1 -2 5 0 5 1 0 01 0 10

1 00 010

— -2 1 0 100

0 01 0 01

If we apply the determinant definition on the right hand side each determinant
is either one, negative one or a scaling factor k that is different from zero. Thus
we have a product of non-zero values and the result is non-zero determinant.

On the other hand if we have linearly dependent rows, by performing lin-
ear combinations we can get a row of zeros thus the determinant is zero for
example:

2 1 -1 1 0 0 1 0 0 2 1 -1
1 -2 3 = 0 1 0 0 1 0 1 -2 3
3 4 =5 2 01 0 -1 1 0 0 0

On the right hand side there a matrix with rows of zeroes so its determinant is
zero so the determinant of the matrix on the left side must be zero.
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Theorem 54. det(A) is unique.

Proof. If columns of A are linear dependent then det(A) = 0 = det(A4). If
colums of A are linearly independent then from

det

det(A) = det(Ep,...E;)
= det(Ep,)...det(E;)
= det(E,,)...det(E;)
= det(BE,,...E)
(

A)

Theorem 55. det(AB) = det(A) det(B)

Proof. If det(B) = 0 then its rows (and by the rank) its rows are linearly depen-
dent. In C = AB the rows of C are linear combinations of the rows of B. Then
the span of the rows of C is a subset of the span of the rows of B and there-
fore the number of linearly independent rows of C' cannot exceed the number
of linearly independent rows of B. Thus the rows of C' cannot be linearly in-
dependent. Thus det(C') = 0 and the theorem holds in this case. Similarly if
det(A) = 0 then the columns of A are linearly dependent and by a similar ar-
gument det(C) = 0. Assume now that det(A) # 0 and det(B) # 0. Then as in
the above theorem we have

det(A) = det(E,,) ... det(E;)
det(B) = det(Ey,) . ..det(E])
and
det(AB) = det(E,, ... E\E}, ... E}) = det(E,,) ...det(E;) det(E},) .. . det(E]) = det(A) det(B)

Note that in the above we do not use the fact that det(AB) = det(AB) we
simply use the definition where det(EA) = det(E) det(A) for any elementary
matrix E. 0

Recall that by Theorem 6 we have that

Suppose the rows (columns) of square A are linearly independent
then A can be written as a product of elementary matrices.

Theorem 56. det(A) = det(AT)
Proof. If A is an elementary matrix then the result follows as:

1. Rescaling: if E is a rescaling matrix then E7 = E and therefore det(E) =
det(ET);

2. Swap: if E'is a swap matrix then E7 = E and therefore det(E) = det(ET);
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3. row combination: if F is a matrix where k times row i is added to row
j then ET is the matrix k times row j is added to row i and therefore
det(ET) = 1 where and therefore det(E) = det(E”); with details if

— —

P P1
Pi-1 7
E=| pj+kp then ET =| g +kp;
Pit1 P
Pn Pn

for i # j. Alternative write-up: if

1 0 ... ...0 0
0 1

00 1 00 0 0O 00
00 10 0 0O 0 0
00 0 0 1 0 0O 0 0

E:
00 0 00 1 00 00
00 0 £ 0 010 0 0
00 0 00 0 0 1 00
0 0 0 1
then

10 .00
0 1

00 1 0 0 00 0 0
00 0 10 0 £ O 0 0
00 0 1 0 00 0 0

ET =
00 0 0O 1 00 00
00 0 00 0 10 00
0 0 0 00 0 0 1 0 0
0 0 0 1
fori # j.
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Now if A has linearly dependent rows it has linearly dependend columns
by Theorem 21 its rows are also linearly dependent. Then the columns of AT
are linearly dependent and det(A”) = 0 = det(A4). Suppose now A has lin-
early independent rows and by Theorem 6 A can be represented as product of
elementary matrices. Say

A=EE,...E;

then
AT = FETET | ETET.

Hence by Theorem 55 we have
det(AT) = det(ET)det(ET ))...det(ET)det(ET)
= det(E;)det(Es_1)...det(E>) det(Ey)
= det(Eq)det(Es)...det(Es_1)det(E;)
= det(E1 2. 9 1E ) det(A)

Which concludes the argument. O

4.2 Towards existence

In the previous section we established that if there is determinant function then
this function is unique. But does it exists? Consider the (invertible) matrix

0O 1 -3 1 0 0 1 -3 0 1 0 0
o 0 1 = 0 1 0 0 1 0 0 0 1
1 -2 5 0 5 1 0 0 1 010(_)
100 01 0
— -2 1 0 1 0 0
0 0 1 0 0 1
as well as
0O 1 -3 1 0 0 1 0 1 1 2 0
0 0 1 = 01 3 01 0 010
1 -2 5 0 0 1 0 0 1 001/
1 0 0 0 0 1
— 0 0 1 0 1 0
01 0 1 00
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Existence question relates to how do we know that from A = E,, ... F; and
A=Ej ...Efthat

det(E,,) ...det(Ey) = det(Ey,) ... det(EY).

May be the product on the left and the right are not equal. Another example
for the matrix

0 0 0 01
00010
0 01 00O
01 0 00O
100 00

how many swaps do we need to get the identity matrix? May be we can do it
with 8 swaps and at the same time we can do it with 5 swaps. In one case we
have determinant positive one and in the other negative one.

—

—

—

P1 P1 P1
Pi-1 Pi-1 Pi-1
Theorem 57. det | @+ U | =det U + det v
Pi+1 Pi+1 Pi+1
Pn Pn Pn
Proof. If pi, ..., pi—1, Pi+1,- - -, Pn are linearly dependent then all determinants

are zero and the result follows. Suppose now they are linearly independent.

Then we can find a vector 5 such that g1,...,0i—1, 05, Pit1, - .-, pn are linearly

independent. Since there are n of them they span all of K" and therefore
u Wipy o w1 Piot B U1 figr o Unf
T = vipr+- +vi1fio1 + i+ vig1fit1 + 0+ Unfn
U+v = (Ul +U1)ﬁ1+~~~+(ui_1 “"Ui—l)ﬁi—l

(s 4 03) B+ (i1 + Vi) Fi1 - F (Un 4 0n) G

Thenforj=1...i—1land j=i+1,...n wehave

I3} P
pi—1 Pi—1
det U+ U = Wy = det Wj_q — (Uj + ’Uj)ﬁj
Di+1 Pit1
ﬁn ﬁ”
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At the end we obtain
1 P1 o1
Pi—1 Pi—1 - 51:1
det | w+v = det | (u;+v;)B | = (uw;+v;)det 8
Pit1 Pit1 Pit1
ﬁn _’n ﬁn
1 1
Pi-1 Pi-1
= u;det 8 + v; det B
Pit1 Pit1
P Pn
Consider
1 1 p1
pi-1 pi-1 Pi-1
u; det Ié; = det u; 8 =det | w8+ uip1
Pit1 Pi+1 Pit1
1 i)
. Pi—1 Pi—1
= det | w;8+uipy +uspy | =---=det U
Pi+1 Pi+1
Pn Pn
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Similarly,

P1 P1
ﬁz:l p_}f;l
v; det 3 =..-=det 0]
Pit1 Pi+1
ﬁn ﬁ n
And substituting back we get the desired result. O

Permutation. A permutation of n is a bijective function with domain and
range the set of numbers 1,...,n,

¢:[1,n] = [1,n].
For example

n  |1]2]3]4
p(n)[2]4]3]1

is a permutation of 4. The permutation is given in table form e.g., ¢(2) = 4. The
matrix form of a permutation of n is an n x n matrix where in row ¢ all elements
are zero except the entry in column ¢(¢) which is one. For the permutation of 4
given above the matrix is

_— o o o
o O o
O = OO
o o = O

Example: From

(5 8 1)=(500)+(0 =8 0)+(0 0 1)
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we have the expansion

0 -8 0 0o 0 1
+det{ 3 =5 1 |+det| 3 -5 1
—4 -7 -1 -4 -7 -1

5 -8 1 5 0 0 0 -8 0
det 3 -5 1 = det 3 -5 1 | +det 3 -5 1
-4 -7 -1 —4 -7 -1 —4 -7 -1
5 0 0 5 0 0
= det 3 0 0 | +det 0 -5 0
—4 -7 -1 —4 -7 -1
0 -8 0 0 0 1
+ det 3 -5 1 | +det 3 -5 1
—4 -7 -1 -4 -7 -1
5 0 0 5 0 0
= det 3 0 0 +det | 3 0 0 + det
-4 0 0 0 -7 0
5 0 0 5 0 0
+ det 0 -5 0 | +det 0 0 1
—4 -7 -1 —4 -7 -1

When we take the same element from the first row we get a matrix where
the first two rows are linearly dependent hence the determinant is zero. So
the only contribution comes from determinants where we take elements from
different columns (and thus keep linearly independence). So we end up with
the formula for the determinant

det(A) = Z A1¢(1) - - - Qno(n) det(Pp) 4.1)
permutations ¢
= > (=) a;c det (A(i|c)) (4.2)
i=1
N (1) det (A(r])) (43)

i=1

Here A(i]j) is a submatrix obtained from A by removing row ¢ and column j.

The value det(A(i;) is called the minor of a;;, and the value (—1)* det (A(i|k))
is called the cofactor of a;;. Equation 4.2 (column expansion) and Equation 4.3
(row expansion) can be obtained from Equation 4.1 via tedious manipulations.

Remark. While determinant function has domain the set of square n x n ma-
trices, when talking about A(|5) in general A need not be a square matrix. The
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notation A(i|j) is often used for any m x n matrix. Cofactors are defined via a
determinant therefore cofactors are defined only for square matrices.

Example: Column expansion by first column

5 -8 1 PR
det| 3 =5 1 = (5)(—1)1+1det( - 1)
-4 7 -1

-8
7 —

_ =

+(3) (=1)*" det (

)

(=) (1) det( :i | )
= 5D (-2

+(3) (=)*" (1)

+(—4) (=1)°7 (=3)
= -1

Observe that repeatedly applying columns expansion by first column im-
plies that the determinant of a triangular matrix is the product of diagonal
entries.

Example: Row expansion by second row

5 —8 1 s 1
det| 3 =5 1 = (3)(—1)2+1det< - _1)
-4 7 -1

+(=5) (—=1)**? det( _i _} )

(1) (~1)2F8 det( o )

= B
+(=5) ()" (-1)

+(1) (1" (3)
= -1
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4.3 Determinant of a permutation
From Equation 4.1 to show that determinant is well defined function we need

to show it is well defined for permutations. These are matrices that have ex-
actly one entry one in each column and row and all other entries are zero.

Po(k)
Definition 53. ¢ = (¢(1), ¢(2),. .., ¢(n)). In a permutation matrix Py, = 5
Pe()

two rows k and | with k < 1 are an inversion if and only if (k) > ¢(1).

Example: the permutation

112]3]4
o) [2]4]3]1
has four inversions: ¢(1) > ¢(4), #(2) > #(3), #(2) > ¢(4) and ¢(3) > ¢(4).

Theorem 58. A row swap changes in a permutation matrix changes the total number
of inversions either from even to odd or from odd to even.

213
413

Proof. Suppose we swap two rows that are adjacent

Po(s) Po(s)

Pe(k) o | Polk+D)
Po(k+1) Po(k)

Pg(t) Pg(t)

Then ¢(s)¢(k) is an inversion in the first matrix if and only if it is an inversion in
the second matrix. Similarly ¢(s)¢(k+1) is an inversion in the first matrix if and
only if it is an inversion in the second matrix; ¢(s+1)¢(k) is an inversion in the
first matrix if and only if it is an inversion in the second matrix; ¢(s+1)¢(k+1)
is an inversion in the first matrix if and only if it is an inversion in the second
matrix. However, ¢(k)¢(k + 1) is an inversion of the first matrix if and only if
¢(k + 1), ¢(k) is not and inversion in the second matrix. Thus a swap of two
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adjacent rows changes the parity of inversions. Consider now

] Po(s Po(s Po(s ’
Lot o) o) o) Poe)
' Po(k) Po1) P 1) ’

p p
o) Po1) Pok) : o0
. . H . : .

: : Pp(i—1)
Po(l Po(k
(0 Po-1) Po-1) P k) o)
, : : : )
#(0) Pot) Po(t) Po(t) =

We perform the swaps by moving row [ up to row k by performing swaps of
adjacent rows. The number of swap that is required is k£ — [. Then moving row
k, which is now at position k + 1 to row [, which requires a total of £ — 1 —{
swaps. The total number of swaps is then 2k — 2] — 1 which is an odd number.
Thus swapping two rows changes the parity of number of inversions. O

Theorem 59. If a permutation has odd number of inversions then swapping to the
identity matrix takes odd number of swaps. If a permutation has even number of swaps
then swapping it to the identity matrix takes even number of swaps.

Proof. Identity has zero number of swaps, hence to change odd number to zero
requires odd swaps and changing even number to zero requires even number
of swaps. O

Definition 54. The sign of a permutation is negative one if the number in inversions
is odd, and positive one if the number of inversions is even.

The following functions satisfies the determinant properties:

det(A) Z A1(1) - - - Ang(n) det(P¢)

permutations ¢

- ¥

permutations ¢

a1¢(1) v an¢(n)sign(P¢)

Indeed P, is an invertible matrix and as discussed above it can be written as
product of swaps only. Then Py = E;Es ... E, and applying the determinant
definition we obtain det(P,) = det(E4)det(Es)...det(E,). Since the number
n of swaps is always even or always odd for a fixed permutation matrix, the
product on the right hand side always equals the sign of the permutation com-
pleting the argument.
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Chapter 5

Eigenvalues and Eigenvectors

5.1 Motivation

Matrices are linear transformation. Under a given transformation some things
remain unchanged. An important idea is to find what remains unchanged.
Such information has extensive application from compression to page ranking
to animations. We will next discuss the mathematics behind those ideas.

5.2 Eigenvectors

Definition 55 (eigenvalues and eigenvectors). Let A be a square matrix. A non-
zero vector i is an eigenvector for A if A = A for some A. The value X is called
eigenvalue for the eigenvector .

We also use the term linear transformation instead of a square matrices. In
that case we mean the matrix of the linear transformation from a basis B to the
same basis B.

5.2.1 Examples

() (7)==

Consider

Then ( __12 > is eigenvector for ( ;L :g > with corresponding eigenvalue
2.
Consider
-9 14 4 —6 —6 —6
3 0 =2 -2 | = -2 | =1( -2
—-18 22 9 -8 -8 -8
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—6 -9 14 4

Then | —2 | iseigenvector for 3 0 -2 | withcorresponding eigen-
-8 -18 22 9
value 1.
Consider

-1 0 3 1 ) 1 0
0 -1 6 2 10 2 0
3 -1 -4 -1 —6 1 |=|20

—4 3 -3 -2 =7 3 0

-1 0 3 1 ) -1 0

1 -1 0 3 1

2 0 -1 6 2

Then 1 | iseigenvector for 3 -1 -4 -1
3 -4 3 -3 -2

-1 -1 0 3 1

ing eigenvalue 0.

5.2.2 Remarks

)
10
—6
—7
)

with correspond-

Observe that the problem AZ = AZ is not linear. For the three by three matrix

above we get

-9 14 4
3 0 =2 |Z=X¢
—18 22 9
or written explicitly we get
—9x1 + 1das + 423 = A1g
3{,C1 - 2(E3 = )\%2
7181‘1 —+ 221’2 —+ 9563 = )\Zg

Both & and A are not known.

Furthermore, if we set # = 0 then A7 = A7 becomes A0 = A0 which is
satisfied for all values A. Such solution is not that interesting. Similar to linear
dependence and independence we are interested in non-trivial solutions for Z.
Therefore, the definition requires that  is a non-zero vector, but allows for A to
be zero. That is 0 can be an eigenvalue but ( cannot be an eigenvector.

5.3 Existence

The first questions that we need to address is: given an n x n matrix is it true
that such a matrix always will have an eigenvector (and a corresponding eigen-

value).
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5.3.1 Polynomials and matrices

For a n x n matrix M let

M° = T,

MY = M

M? = MM

M? = MMM

ME = MM
——
k times

With the above polynomials can be evaluated at matrices. For a polynomial

p(m) = Qo +a1$+a2x2+...+akxk

aoxo + a1x1 + a2x2 + -4+ arx

= (z—x0)(x—x1)™" - (x — )"

k

where Vi,r; > 1,r; € Zand rg +r1 +--- + r; = k, define

p(M) = aoM®+ayM" +ayM? + - + a, M*
— (M 7$1In)T1(M7xQIn)T2 (fotjn)”

Examples

For the matrix M and the corresponding polynomial p(z) verify the evalua-

tions below:
4 -5
v (3 5)

p(z) = 2*-4
6 —5 4 -5 10
(s )l 3) G y)
= (-2)-(z+2)
(2 -5 6 —5
-2 =5 2 -1
M—(2)I2 M—(=2)I1

|
7N
N DO
[
ot Ut
~_
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The same polynomial evaluated at a different matrix:

2 2 3
M = 1 01
2 3 4
plz) = 2> —4
12 13 20 2 2 3 1
=1 4 5 7 |40l 1 0 1 |]—-4(0
15 16 25 2 3 4 0
= (@-2)-(z+2)
0 2 3 4 2 3
= 1 -2 1 1 21
2 3 2 2 3 6
M—(2)I; M—(-2)I;
8 13 20
= 4 1 7
15 16 21
The same matrix evaluated at a different polynomial:
2 2 3
M = 1 01
2 3 4
p(z) = 2*—13z+12
7T 84 129 12 13 20 2
= 1 27 29 45 |40 4 5 7 |-13]| 1
96 105 161 15 16 25 2
= (z-3)-(x—1)-(x+4)
-1 2 3 1 2 3 6 2 3
= 1 -3 1 1 -1 1 1 4 1
2 31 2 3 3 2 3 8
M—(3)I3 M—(1)I3 M—(—4)I3
63 58 90
= 14 41 32
70 66 121
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5.3.2 Matrices as maps

Let M be an n x n matrix and @ be a non zero vector with n components. M
can be viewed as a linear transformation. Consider

So = {M°a}

S = {M @ M'a}

Sy = {M @, M'd, M*u}

Sy = {M @, M'a, M*a,..., M'a}

There is a minimum index k& > 1 such that S, is linearly dependent and for
all j < k the set S, is linearly independent. Indeed S is just the vector « that
is non-zero, therefore Sy is linearly independent. On the other hand any set
of i > n vectors in the n-dimensional vector space are linearly dependent thus
k<n.

Let Sj, be first set in the sequence of sets of vectors Sy, S ... thatis linearly
dependent. Adopting the notation

u, = Mt

which recursively means
ﬁi =M 7-_[1'—1

the set S}, is
Sp = {M @, M'a, M?@,. .., M" i, MFa} = {up, i, s, ... unl, g}
Since S; is linearly dependent there are coefficients (not all zero):
QoUp + Ut + asth + -+ + ap_1urs1 + gty =0

Observe that if , = 0 then the set Sj,_; is linearly dependent contradicting
minimality of k; thus division by «, is allowed

Qo ar Qg _, Qg1 . =
—up+ —uy + —uz+ -+ up—1 +up =0
(a3 (a3 o Qg
Let
Q;
a; = —
Qg
then

aplly + a1uy + asty + - + ap_1up—1 +ur =0
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By substituting back the notation for «; the above equation implies:

0 = ap+ a1l + agtiy + -+ ap_1up1 + Uk
= aoM°T+ a; M G+ asM?*@+ -+ ap_ M i+ M*a
= (aoM®+ a1 M + asM? + -+ + aj_ M* ' + M¥) @
= p(M)u
= (M = XNeI))(M — Np—1 1) -+ - (M = Xo Iy ) (M — M 1)
Matrix multiplication is associative operation so the order of multiplication

does not change the outcome of the computation. Performing the multiplica-
tion from right to left we have:

% = 4#0
1 = (M—-MIL)u
Z = (M —XL,)(M—X\1,)u
Ziil = (M — Ai—lln) e (M — )\an)(M — /\1]n)u
z, = (M — )\iln) (M — )\i,lln) e (M — )\an)(M — Alln)ﬁ
Zkil = (M — Ak—lln) R (M — Agln)(M — Alln)ﬁ
0=2 = (M—XeI))(M = Xg_1L,) - (M — Mo L) (M — M\ 1,)d

We have found an eigenvector with corresponding eigenvalue: if Z; = 0 and
271 # 0 then ); is an eigenvalue and z;”; is a corresponding eigenvector.
Which shows that every n x n matrix has at least one eigenvector and corre-
sponding eigenvalue.

Examples

Applying the above procedure to

—67 116 48
M = —25 44 18
=35 59 25
1
U = 0
1
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The sets S; are

1
So = 0
1
1 —19
S = 0 -7
1 —10
1 —19 —19
Sy = 0 -7 —13
1 —10 2
1 —19 —19 —139
S3 = 0 -7 —-13 —61
1 —10 2 —52

Sp is linear independent and S3 definitely linearly dependent. But there may
be another set with index smaller that 3 that is linearly dependent. Following
the above procedure check if S; is linearly dependent that is solve:

(1) () - (3)

the set of solutions contains only the trivial solution so it is linearly indepen-
dent. Next, is Sy linearly independent, that is solve:

1 -19 —19 0
sol O | + sy =7 | + 59 —13 = 0
1 —-10 2 0

the set of solutions contains only the trivial solution so it is linearly indepen-
dent. The set S3 is linearly dependent so the index we need is 3. Furthermore,
the equation

1 -19 —-19 —139 0
So 0 + S1 —7 —+ S92 —13 —+ S3 —61 = 0
1 —10 2 —52 0
has non-trivial solution ( Sg S1 So  S3 ) = ( 6 -5 -2 1 ) For the cor-

responding polynomial

p(z) = 23 —222—5:x+6
= (z-3)-(z—-1)-(z+2)
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the vectors z; are

40 ~17
7 = —20):(1\4_(1)1) —7)

~10 -8
0 —40

Z o= (o |l=m-3)0n —20
0 ~10

The equation

¢

rearranged as

)
({%é) (:%ﬁ)
|

equivalently
—67 116 48 —40 1 00 —40
—-25 44 18 =20 | =310 1 O -20
-35 59 25 -10 0 01 —-10
simplified
—67 116 48 —40 —40
—25 44 18 =20 | =3 —-20
=35 59 25 -10 -10
—40 —67 116 48
identifies | —20 | aseigenvector with eigenvalue 3 for matrix [ —25 44 18
—10 -35 959 25

The eigenvector that is computed depends on the initial vector « and the
order of which roots of the polynomial are listed. Here is another example for
the same matrix but with different initial vector:

—67 116 48
M = —25 44 18
-35 59 25
3
U = 1
2
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The sets S; are:

3
So = 1
2
3 11
ST = 1 5
2 4
3 11 35
Sy = 1 5 17
2 4 10
3 11 35 107
S3 = 1 5 17 53
2 4 10 28

So is linear independent and S3 definitely linearly dependent. But there may
be another set with index smaller that 3 that is linearly dependent. Following
the above procedure check if 5 is linearly dependent that is solve:

(1) (5) - ()

the set of solutions contains only the trivial solution so it is linearly indepen-
dent. Next, is Sy linearly independent, that is solve:

3 11 35 0
So 1 + 351 5 + So 17 = 0
2 4 10 0

The set \S; is linearly dependent. For example the above equation has a non-
trivial solution ( s9 s1 sz ) =( 3 —4 1 ). Thus theindex k is 2. For the
corresponding polynomial

p(z) = 22 —4x+3
= (x—=3)-(x—-1)
the vectors Z; are
3
Zo = 1
2
8 3
7 = 4 |=M-01)D)| 1
2 2
0 8
7y = 0 |=M-3)I)| 4
0 2



The equation

0 8
0 |=WM-3)I)| 4
0 2
rearranged as
8 8
M| 4 ]=@)1] 14
2 2
equivalently
—67 116 48 8 100 8
—-25 44 18 4 1 =30 10 4
=35 959 25 2 0 01 2
simplified
—67 116 48 8 8
—-25 44 18 4 | =3\ 4
-35 59 25 2 2
8 —67 116 48
identifies | 4 | aseigenvector with eigenvalue 3 for matrix [ —25 44 18
2 -35 59 25

5.4 Computing Eigenvalues and Eigenvectors

The above procedure illustrates that every square matrix has an eigenvector
and corresponding eigenvalue. However, the procedure depends on the initial
vector, on the order of which polynomial roots are listed in the expansion of the
polynomial; it is also tedious. It does indicate that there is a relation between
eigenvalues and eigenvectors, evaluating polynomials at matrices and linear
dependence.

Once the fact that every square matrix is has at least one eigenvector is
established, the next natural step is to find all eigenvectors and eigenvalues.

We can write Ad = A\i as A = Al or equivalently

(A= Xi=0

Since we want a non-zero vector @ the goal reduces to finding non-zero linear
combination of the columns of A — AI that evaluate to the zero vector. In other
words A should make the columns of A — A linearly dependent. Whether
A — A has linearly dependent columns can be checked by looking at its deter-
minant. In other words computing the det(A — AI) and finding for which \’s
the resulting determinant is zero. The determinant of A — \I is a polynomial in
A, so we need the roots of that polynomial. Then for each root we find the non-
trivial solutions of (A — \;I)u@ = 0 and obtain the eigenvectors. This argument
prove the following,
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Theorem 60. The number \ is an eigenvalue of A if and only if det(A — AI) = 0.

Then an algorithm to find the eigenvectors and eigenvalues for a matrix A
proceeds as follows:

1. compute the determinant of A — A/

2. compute the roots Ay, ..., A, of the resulting polynomial, the n-roots are
the eigenvalues

3. for each eigenvalue ¢ find the corresponding eigenvector by computing
(A=ND)Z=0

Definition 56. For a matrix A the polynomial det(A—AI) is called the characteristic
polynomial and the equation det(A— AI) = 0 is called the characteristic equation.

54.1 Example 2 x 2 — 2], —1]

Consider matrix A and the corresponding A — z1I:

(4 =5 _( —z+4 -5
A<2 _3> . AZI( ! _2_3)

The characteristic polynomial is

p(z) = det(A—ZI):det< —Z+;1 . __g )
22—2—2
= (2-2)-(-1-2)

For the solution 2 of the characteristic equation p(z) = 0 we have

—~
b
|
—
[\}
N
~
S—
8
Il
(=1}

/N 7/ N
o o o o
N~ N

The set of solutions is
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For the solution —1 of the characteristic equation p(z) = 0 we have

—~
b
|
T
—
=
~
S~—
8
(=1}

(2 3) -0 (o 1)) -

i R
o O o O
N~ N

The set of solutions is

V1:{80< } > |VZ7SZ€R}

5.4.2 Example 3 x 3 — 2} 11 -3}
Consider matrix A and the corresponding A — z1:
-9 14 4 —2—-9 14 4
A= 3 0 -2 - A-=zl= 3 —z -2
—-18 22 9 —-18 22 —z+9

The characteristic polynomial is

—z—9 14 4
p(z) = det(A—zI)=det 3 —z -2

—18 22 —2+49
224+ 72—6
= 2-2)-(1-2)(=3-2)

For the solution 2 of the characteristic equation p(z) = 0 we have

—9 14 4 10
3 0 =2 |-@210 1
18 22 9 0 0
4

2

The set of solutions is

2
VQZ{SO(I ) Vi,sieR}
2
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For the solution 1 of the characteristic equation p(z) = 0 we have

A-1)Dz = 0

(
(

—9 14 4 100
3 0 2 |-m|lo1o0]]z =
18 22 9 00 1

o O o o O O

/N
| \
— —
oo w o
o o
)

|

00 N W
\_/
8l

Il

The set of solutions is

3
Vl—{SO(l ) V’L',Sq;ER}
4

For the solution —3 of the characteristic equation p(z) = 0 we have

(A—(=3)& = 0

—9 14 4 100 0
30 2 |-(=3)(o0o1o0]]z =10
18 22 9 00 1 0
4 0

0

0

The set of solutions is

5.4.3 Example 3 x 3 — 22 0!

Consider matrix A and the corresponding A — z1I:

1 2 1 —z+1 2 1
A= 2 0 -2 - A—-zl= 2 —z -2
-1 2 3 -1 2 —z+3

The characteristic polynomial is

—z+1 2 1
p(z) = det(A—2I)=det 2 —z -2
-1 2 —z+43
= —23+42%2 -4z
= (0-2)-(2-2)°
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For the solution 0 of the characteristic equation p(z) = 0 we have

(A-O)Nz = 0

12 1 100 0
20 2]-0[0o1o0]]z = |0
-1 2 3 00 1 0
12 1 0
20 2|z = [0
[2i2) - (1)

The set of solutions is

1
Vo—{SO ( -1 ) |Vi,8i€R}
1

For the solution 2 of the characteristic equation p(z) = 0 we have

12 1 100
20 2 |-@010]|]|z =
-1 2 3 00 1

The set of solutions is

5.4.4 Example 3 x 3 — 43

Consider matrix A and the corresponding A — z1I:

2 2 2 —z+2 2
A= 2 1 -1 - A—-zl= 2 —z+1
-7 9 9 -7 9 —z+9

The characteristic polynomial is

—z+2 2 2
det(A — 2I) = det 2 —z+1 -1

-7 9 —249

p(2)

= —2%4+122%2 — 482 + 64
= (4-2)3
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For the solution 4 of the characteristic equation p(z) = 0 we have

—~
by
|
—~
=~
Nin”
~
S~—
8
Il
(=1

——
—
|
N NN
O = N
I
O = N
\/
|
— =
N
| | —
~N NN
o O =
|
© W N o = O
| = o O
T DN -
\_/
8
|

The set of solutions is

2
V4{$0(1 ) Vi,SiGR}
1

5.4.5 Example 3 x 3 — 43

Consider matrix A and the corresponding A — z1:

7T -1 =2 —z47 -1 -2
A= 3 3 -2 - A—zl= 3 —z+3 -2
3 -1 2 3 -1 —z+2

The characteristic polynomial is

—z+ 7 -1 -2
p(z) = det(A—2I)=det 3 —z+3 -2
3 -1 —z+42
= -2 +122> — 482464
— (-2
For the solution 4 of the characteristic equation p(z) = 0 we have
(A—(4)I)Z 0
7T -1 =2 1 00 0
3 3 2 |-@|o1o0]]|z 0
3 -1 2 0 0 1 0
3 -1 =2 0
3 -1 -2 |Z = 0
3 -1 -2 0
The set of solutions is
2 0
Vi=<sg| 0 | +5 2 | Vi,s; € R
3 -1

180



5.4.6 Example 3 x 3 — 43

Consider matrix A and the corresponding A — z1I:

4 0 0 —z+4 0 0
A=10 4 0 - A—zl= 0 —2+4 0
0 0 4 0 0 —2+4

The characteristic polynomial is

—z+4 0 0
p(z) = det(A—zI)=det 0 —z+4 0
0 0 —z+4

= —23 41222 —482+64
= (4-2)3

For the solution 4 of the characteristic equation p(z) = 0 we have

(A-@nNz = 0

0 0
10 r =
0 1

0

0

0

S O =
O = O
= O O
|
—~
N
S—
o O O o O O

The set of solutions is

1 0 0
Vi=1< 59 0 =+ 51 1 + S9 0 |Vi,SiER
0 0 1
5.4.7 Example5 x 5 — 03, —13
Consider matrix A
-1 0 3 1 5
0 -1 6 2 10
A= 3 -1 -4 -1 -6
-4 3 -3 -2 -7
-1 0 3 1 5
and the corresponding A — z/
—z—1 0 3 1 5
0 —z2-1 6 2 10
A—zI= 3 -1 —z—-4 -1 —6
—4 3 -3 —z-2 -7
-1 0 3 1 —z+5
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The characteristic polynomial is

—z—1 0

0 —z-1

p(z) = det(A—zI)=det 3 -1
—4 3

-1 0

= —25-324-323-22
= (0-2)%-(-1-2)>3

3
6

—z—4

-3
3

1
2

-1

—z —

2
1

For the solution 0 of the characteristic equation p(z) = 0 we have

-1 0 3 1 5 1
0 -1 6 2 10 0
3 -1 -4 -1 -6 [=(0)] O

—4 3 -3 -2 -7 0

-1 0 3 1 5 0

-1 0
0 -1
3 -1
—4 3
-1 0
The set of solutions is
1
2
Vo=« sp 0 + 51
1
0 _

(A-(0))7
0000
1000
0100 ||z
0010
0001
3 1 5
6 2 10
—4 -1 -6 |Z
-3 -2 -7
3 1 5
0
0
1 ||VisieR
2
1

For the solution —1 of the characteristic equation p(z) = 0 we have

-1 0 3 1 5
0 -1 6 2 10
3 -1 -4 -1 —6

-4 3 -3 -2 -7

-1 0 3 1 )

|
—

I
—_
=

[ RGUI N e M e) OO OO

[
— Rk w o o
|
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(A-(=1)N)z
000
000
1 0o ||z
010
00 1
1 5
2 10
-1 -6 |&
-1 -7
1 6

10

-7
—24+5

(=]

OO O OO OO O OO

SO oo oo (e el e B e )




The set of solutions is

+ 351 |VZ,S,LER

|

—-

Il

vl

=)
= OtO N~
O Wk OO

5.4.8 Remarks

In Section 5.3, we established that every matrix has at least one eigenvector. By
definition of eigenvalue A we have that the columns of the matrix A — A\l are
linearly dependent, thus in this section we establish that for every eigenvalue
there is at least one corresponding eigenvector.

The number of eigenvalues is equal to the number of roots of the character-
istic polynomial det(A — AI) which over the complex numbers is the order of
the matrix A.

Next we will work on the number of linearly independent eigenvectors. It
is worth noting that different eigenvalues have linearly independent eigenvec-
tors. The largest number of linearly independent eigenvector can be less than
the order of A. A matrix of order n with n linearly independent eigenvectors
can be diagonalized.

5.5 Properties of eigenvalues and eigenvectors

Definition 57. The eigenspace of a transformation ¢ associated with the eigen-
value \ is

Vi ={C16(0) = A}
The eigenspace of a matrix is analogous.

Theorem 61. An eigenspace is a subspace.

Proof. The zero vector is in any eigenspace since AG = A0 for any eigenvalue \.
So a subspace is non-empty and it remains to see that an eigenspace is closed
under linear combinations. Let 7, @ € V; for any constants a and 3

Aot + Bu) = a AV + BAU = oAU + BT = AoV + Si)
and therefore o/ + i € V. By Theorem 23 the result follows. O

With the above result in mind

Definition 58 (multiplicity). Let A be a square matrix of order n with characteristic
polynomial:

det(A—=X) = Ao—=A)" A\ =X)" (A =A™
The algebraic multiplicity of \; € {Xo ... A} is m;. The geometric multiplicity of

the eigenvalue \; is the dimension of the corresponding eigenspace V y,.
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Example: From the examples above

eigenvalue algebraic multiplicity —geometric multiplicity

§5.4.1 2 1 1
-1 1 1

2 1 1

§5.4.2 i 1 1
-3 1 1

§5.4.3 2 2 1
0 1 1

§5.4.4 1 3 1
§5.4.5 7 3 5
§5.4.6 7 3 3
§5.4.7 0 2 2
-1 3 2

The geometric multiplicity of an eigenvalue is no larger than its algebraic
multiplicity (while true this claim is not proved here), and is at least one (since
every eigenvalue has at least one non-trivial eigenvector).

Theorem 62. A set of eigenvectors of corresponding to distinct eigenvalues is linearly
independent.

Proof. We will use induction on the number of eigenvalues. The base step is
that there are zero eigenvalues. Then the set of associated vectors is empty and
so is linearly independent.

For the inductive step assume that the statement is true for any set of k > 0
distinct eigenvalues. Consider distinct eigenvalues A1, ..., Ap4+1 and let @y, . .., Uk11
be associated eigenvectors. Suppose that

0=c1¥1 4 -+ culi + Chp1Tk41-
Derive two equations from that, the first by multiplying by A, on both sides
0= 1@ + -+ Chy1 Mes 1Tkt
and the second by applying the map to both sides
0=cit(@) + -+ chrrt(Thr1) = ATy + -+ 4 Chop1 M1 T a1
(applying the matrix gives the same result). Subtract the second from the first.

0=ciMr1 — AT+ 4 b1 — )Tk + 1 Mkg1 — A1) T

184



The ¥+ term vanishes. Then the induction hypothesis gives that
Cl(>\k+1 - /\1) =0... Ck()\k+1 - )\k) =0
The eigenvalues are distinct so the coefficients c;, ..., ¢; are all 0. With that

we are left with the equation 0= Cl+1Uk+1 SO Cpy1 is also 0. O

5.6 Diagonal form of a matrix

5.6.1 Similarity

Definition 59. Two matrices A and B are called similar if there is an invertible
matrix S such that A = S~'BS.

From (571) ~! = Sif A is similar to B then B is similar to A.
Example: from
2 1\ 1 -1 11 2 1
-1 0 /) \ -1 2 0 1 11
2 1\, . . 11
we conclude ( 10 ) is similar to ( 01 ) .
Definition 60. A matrix A is diagonalizable if it is similar to a diagonal matrix D.

5.6.2 Example

The matrix from §5.4.2 has three linearly independent eigenvectors vectors

2 2 3
_01 = 1 _’2 = 0 _’3 = 1
2 3 4
Construct a matrix
(I 2 23
S = 51 5y 353 = 1 0 1
+ 4! 2 3 4

Since the columns of S are linearly independent the matrix is invertible with
inverse

3 -1 -2
St = 2 -2 -1
-3 2 2
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Consider R = AS

A S
4 —6 3 -9 14 4 2 2 3
2 0 1 = 3 0 -2 1 0 1
4 — 4 —18 22 9 2 3 4
—_————
R
Let
4 —6 3
A= 2 m=1 o0 =11
4 -9 4
We have
7?1 A S1 51
—— —
4 -9 14 4 2 d11 2
2 = 3 0 -2 1 = 2 1
4 —18 22 9 2 2
To A 52 5
—
—6 -9 14 4 2 d22 2
0 = 3 0 -2 0 = -3 0
-9 —18 22 9 3 3
73 A 53 33
——
3 -9 14 4 3 dss 3
1 = 3 0 -2 1 = 1 1
4 —18 22 9 4 4

where d;; is the eigenvalue corresponding to eigenvector 5;. For every vector
5; we have

2 2 2 3 1
5 = 1 |=(101 0
2 2 3 4 0
2 2 2 3 0
H» = |0 ]=]101 1
3 2 3 4 0
3 2 2 3 0
5 = 1 |l=(101 0
4 2 3 4 1
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Adding the eigenvalues and using the fact that multiplication with a constant
commutes with vector multiplication we get

2 2 2 3 1
dnsi = 2| 1 =211 0 1 0
2 2 3 4 0
2 2 3 2 2 3 2
= 1 0 1 = 1 0 1 0
2 3 4 2 3 4 0
2 2 2 3 0
do2Sy = =3[ O =-3 1 0 1 1
3 2 3 4 0
2 2 3 2 2 3 0
= 1 0 1 -3 1 =1 0 1 -3
2 3 0 2 3 4 0
3 2 3 0
dg3s3 = 1| 1 |=111 0 1 0
4 3 4 1
2 2 3 2 2 3 0
= 1 0 1 = 1 0 1 0
2 3 4 2 3 4 1
So for every i we have 7; = S(d;;€;) Sdl,where
= 1 2
di = dper=210]1=10
0 0
. 0 0
dy = dpé=-311|=[ -3
0 0
. 0 0
d3 = dse€3=1 0 | =1 0
1 1
Combine the vectors d; into a (diagonal) matrix
T 2 00
D: dl d2 d3 = O —3 0
L+l 0 01
to obtain
4 -6 3 2 2 3 2 0 O
2 01 |=(101 0 -3 0
4 -9 4 2 3 4 0 0 1
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Thus R = ASand R=SD

A S
4 —6 3 -9 14 4 2 2 3
2 01 = 3 0 -2 1 01
4 -9 4 —18 22 9 2 3 4

R
4 —6 3 2 3 2 0 0
2 0 1 = 1 01 0 -3 0
4 -9 4 3 4 0 0 1
S D

from which one concludes AS = SD.

get
A S D st
-9 14 4 2 2 3 2 0 0 3 -1 =2
3 0 =2 = 1 0 1 0 -3 0 2 =2 -1
—18 22 9 2 3 4 0 0 1 -3 2 2

which shows the matrix A is diagonalizable.

5.6.3 Example
From A = SDS~! where

A S D s~
8 —6 —12 3 2 2 2 0 0 1 0 -2
3 —1 —6 = 1 0 1 0 2 0 0 -1 1
3 -3 -4 1 1 1 0 0 -1 -1 1 2

the matrix A is diagonalizable. Multiplying on both sides from the right with

S we get AS = SD; suppose the result of the multiplication is R so

R=AS and R=SD
that is
A s
6 4 -2 8 —6 —12 3 2 2
2 0 -1 = 3 -1 —6 1 0 1
2 2 -1 3 -3 —4 1 1 1
| S ——
R
—_—
6 4 -2 3 2 2 2 0 0
2 0 -1 = 1 0 1 0 2 0
2 2 -1 1 1 1 0 0 -1
s D
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/—:IH ~ /—jlh
6 8 —6 —12 3
2 = 3 -1 —6 1
2 3 -3 -4 1
7 A &
——
4 8§ —6 —12 2
0 = 3 -1 —6 0
2 3 -3 -4 1
73 A 53
—— —
-2 8§ —6 —12 2
—1 = 3 -1 -6 1
-1 3 -3 -4 1
1 T’ I 2 0 0
Likewisefor D= | dy dy d3 | = 0 2 0 | where
Ll 0 0 -1
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we have

S N O

N O O
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From R = SD using properties of matrix multiplication we obtain 7; = d;;5;

7 S dy S
— —_——— —_—~
6 3 2 2 2 3 2 2 1
2 = 1 01 0 = 1 0 1 (2) 0
2 1 1 1 0 1 1 1 \d/ 0
€1
s &
3 2 2 1 3
= (2 1 0 1 0 = (2) 1
~\1 11 0 ~\1
dll dll
€1
7 S do S
—— ——
4 3 2 2 0 3 2 2 0
0 = 1 0 1 2 = 1 0 1 (2) 1
2 1 1 1 0 1 1 1 d" 0
22
é>
s 5
3 2 2 0 2
= (2 1 0 1 1 = (2) 0
~\1 11 0 ~\1
da2 daa
é>
’7‘3 S (;3 S
— — ——l—
-2 3 2 2 0 3 2 2 0
-1 = 1 0 1 0 = 1 0 1 (-1) 0
-1 1 1 1 -1 1 1 1 e 1
€3
S S3
—_—~ —
3 2 2 0 2
= (-1 1 0 1 0 =(-1) 1
‘;f" 1 1 1 1 ‘;f" 1
33 \ , 33

As a result we have
Fi = A% = duf;

and by definition we get §; is eigenvector with eigenvalue d;; for matrix A.
Since S is invertible its columns are linearly independent therefore 31, 55, 53 are
linearly independent and therefore we have three linearly independent eigen-
vectors for matrix A.
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5.6.4 Diagonalization

In the above two examples do not depend on the actual values of the constants.
The idea can be generalized to the following

Theorem 63. An n x n matrix is diagonalizable if and only if it has n linearly inde-
pendent eigenvectors.

Proof. Assume ST'AS = D = (dy€1,dséo,...,d,e,) and let

T 7 )
S == §1 §2 §n
L4 \
alternatively Sé; = 5;. We have that
(A8, ASy, ..., A8,) = A(81,58,...,8,)

= JAS =SS'AS = SD = S(d,¢1,dsés,...,d,¢y)
= (Sdyé1,5dses,...,5d,¢e,)
= (d15¢€1,d25¢é,...,d,S¢,)
= (d151,d28,...,d,8,)
Column-wise we have A3; = d;5;; the columns of S are all non-zero since S is

invertible and therefore every column of S is an eigenvector for A.
Conversely, assume that A has n linearly independent eigenvectors say

51,..., 5, with corresponding eigenvalues Ai, A2 ..., A, construct a matrix S
whose columns are 571, ..., 5, so

T 7 )

S = 51 S 5n

L 4

alternatively
Se; = 5;
We have that
STIAS = STYA(5,5,...,5,)

M )\7L§7L)

(181, A2 SE, ..., A\, SE)

Il
“ oo w g
>
&)
>
()
St

= (A1€17A2527"'7An5n)
A0 0
0 A 0
- _ - D
0 0 - A\,
where D is a diagonal matrix with diagonal entries the eigenvalues of A. [
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Example: we can have different matrices S by picking different eigenvectors
as long as they are linearly independent. Likewise if we reorder the eigenvec-
tors we will get a different (but similar) diagonal matrix.

8§ —6 —12 3 2 2 2 0 0 1 0 -2

3 -1 -6 1 01 0 2 0 0 -1 1

3 -3 -4 1 11 0 0 -1 -1 1 2
Determinant. A matrix A is invertible if none of its eigenvalues is zero:

det(A) = det(S™TAS) = det(S™1) det(A) det(S) = det(A)

Wi O Wi
| Lo | Lo [©
N N
\_/
—
o O N
S N O
|
_— o O
\—/
—
|
NN O
W= o w
I
— ol o
\/

Diagonalization. A matrix A is diagonalizable if it has sufficiently many lin-
early independent eigenvectors. For example let’s try to diagonalize A =

< } ? ); the matrix A has only eigenvalue 1 and a single linearly indepen-

(1) . If Ais diagonalizable then there is an invertible ma-

1 _
with inverse S™! = d b . Such that
ad — cb —c a

(o o) o)) 7)

equivalently

(ad—cb)<g 2) -

dent eigenvector

b
d

trix S = ( ¢
C

(a—c)b+ad

[ ald—b)—bc bd—b>—bd
- —ac+ a? + ac
a(d —b) — bc —b?
a? (a—c¢)+ad
From here

(ad —cb)xr = a(d—10b)—be

0 = -
0 = a
(ad—cb)y = (a—c)b+ad
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concluding that @ = b = 0. In that case for the matrix S we have S = ( (c) 2 >

which is not an invertible matrix, a contradiction with S being invertible.

Definition 61 (defective matrix). A matrix A that is not diagonalizable is call de-
fective.

194



	Linear Systems
	Linearity and linear equations
	Solutions to a linear equation

	System of linear equations
	Equivalent systems
	Matrices and vectors
	Representations of system of linear equations
	Echelon form and back substitution
	Row operations as matrix multiplication
	Matrix operations

	Gauss' method
	Gauss' method example:
	Inconsistent system of linear equation
	Another consistent example
	System of linear equations with shared matrix
	System of linear equations with unique solution
	Observations
	Reduced Echelon form and inverse

	Homogeneous and particular solutions
	Zero equals zero and number of solutions


	Vector spaces
	Definitions and examples
	A special example
	General results for vector spaces
	Linear combinations
	Linear dependence and independence
	Main theorem
	Subspaces
	Span
	Basis and Dimension
	Coordinates
	Change of basis

	Rank of a matrix

	Linear Transformations
	Basic definitions
	Note on terminology

	Examples
	Reflection
	Example: exponential coordinate
	Example: polynomial coordinate
	Polynomials to upper triangular matrices:
	Example: M23 to M32 matrices

	Isomorphic Vector Spaces
	Properties of linear maps
	Linear extensions
	R2 R4 example
	M32 P6 example
	 P3M22 example

	Rank nullity
	Matrix representation of linear maps
	d:P3P2
	M22 P2
	P2D2
	M23M23

	Change of basis
	P3P3
	P2P2
	Invertible matrices
	Matrix multiplication


	Determinant
	Definitions and properties
	Towards existence
	Determinant of a permutation

	Eigenvalues and Eigenvectors
	Motivation
	Eigenvectors
	Examples
	Remarks

	Existence
	Polynomials and matrices
	Matrices as maps

	Computing Eigenvalues and Eigenvectors
	Example 22 211, -111
	Example 33 211,111,-311
	Example 33 221,011
	Example 33 431
	Example 33 432
	Example 33 433
	Example 55 022,-132
	Remarks

	Properties of eigenvalues and eigenvectors
	Diagonal form of a matrix
	Similarity
	Example
	Example
	Diagonalization



