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Chapter 1

Linear Systems

1.1 Linearity and linear equations

Definition 1 (linear combination). A linear combination of x1 . . . xn is an expres-
sion of the form

a1x1 + a2x2 + · · · anxn,
where xi’s are indeterminates or variables; and ai’s are coefficients and belong to a
field K.

Remark: In the above definition and in the remainder of these notes the field
K will be mostly either the real numbers R or the complex numbers C, but in
general any field will do, except in special cases when C is required. We will
strive to make a note whenever C is required.

Examples:

linear non-linear
x+ y + z tan(x) + x+ (−1)z
2ix+ y + (−1)z x+ yx+ (−1)z
x1 + (1− 7i)y +

√
−1z x2 + sin(y)x+ (−1)z(∫ 4

0
x dx

)
x1 + (1− 7i)x2 +

√
−1x3 sin(x) + sin(y) + sin(z)

Remark: often 0x is omitted. Likewise instead of (−1)x one writes−x. There
is a difference between linear in x and linear in sinx.

Definition 2 (linear equation). A linear equation in the set of variables X, where
without loss of generality X = {x1 . . . xn} is an equation of the form

a1x1 + a2x2 + · · · anxn = b.

The value b is the constant of the linear equation and similar to the coefficients it
belongs to K .
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Notation: when referring to the linear equation

a1x1 + a2x2 + · · ·+ ancn = b

we will use the summation symbol
∑

and write

n∑
i=1

aixi = b.

The limits of the summation can be any two numbers (negatives are fine for
example). We sum only integers indices.

Examples: For a set of variable X = {x1, x2, x3, x4}we have

linear equations not linear equations
x1 + 4x2 + x3 + 2x4 = −8

√
x1 + 3x2 + x4 = 3

2x1 + 3x2 + x3 = 5 x1x2 + x2 + x4 = 6

Definition 3 (homogeneous equation). An equation
∑n
i=1 aixi = b is called ho-

mogeneous if the constant of the equation i.e., b is zero, that is b = 0.

Examples:

non-homogeneous linear equations homogeneous linear equations
x1 + 4x2 + x3 + 2x4 = −8 x1 + 4x2 + x3 + 2x4 = 0
2x1 + 3x2 + x3 = 5 2x1 + 3x2 + x3 = 0

1.1.1 Solutions to a linear equation

Definition 4 (solution of an equation). An n-tuple (s1, . . . , sn) ∈ Kn is a solution1

to the linear equation

a1x1 + a2x2 + · · ·+ anxn = b ⇐⇒ a1s1 + a2s2 + · · ·+ ansn = b

If the set of solution is empty, then the equation is said to have no solution or is incon-
sistent. If it has at least one solution it is said to be consistent.

Observe that the second equation is concerned with numbers only; there
are no indeterminates.

Examples: (1, 0,−3) is solutions to 4x1 + 2x2 + x3 = 1, but (−3, 0, 1) is not a
solution.

Example: The values (−2, 5, 0) and (0, 4,−1) are both solutions to x1 + x2 +
x3 = 3, (1, 5, 0) is not a solution to x1 + x2 + x3 = 3. The set of all solutions is
x3 = s1, x2 = s2 and x1 = 3− s1 − s2 where s1, s2 ∈ K.

1Order is important
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Example: the solution to x1 + x2 + x3 = 1 is the set

{(1− s1 − s2, s1, s2) | s1, s2 ∈ K} ⊆ K3

Theorem 1. Let l be the linear equation

a1x1 + a2x2 + · · ·+ anxn = b

1. if at least one ai is non-zero then the solution set is

S =

{(
s1, . . . , si−1,

b− (a1s1 + · · ·+ ai−1si−1 + ai+1si+1 + · · ·+ ansn)

ai
, si+1, . . . , sn

)
| s1, . . . , si−1, si+1, . . . , sn ∈ K

}
;

2. if all ai’s are zero and

(a) the constant b is zero then the solution set is

{(s1, . . . , sn, ) | s1, . . . , sn ∈ K} ;

(b) and lastly if all ai’s are zero and the constant b is non-zero then the solution
set is empty.

Proof. Suppose ai 6= 0 and let s1, . . . , sn be a solution to the linear equation, by
definition

a1s1 + a2s2 + · · ·+ ansn = b

rearranging

si =
b− (a1s1 + · · ·+ ai−1si−1 + ai+1si+1 + · · ·+ ansn)

ai
.

Thus s1, . . . , sn ∈ S. Take an element from the set S and consider

a1s1 + · · ·+ ai−1si−1

+ai
b− (a1s1 + · · ·+ ai−1si−1 + ai+1si+1 + · · ·+ ansn)

ai
+ai+1si+1 + · · ·+ ansn

= a1s1 + · · ·+ ai−1si−1 + ai+1si+1 + · · ·+ ansn

+b− (a1s1 + · · ·+ ai−1si−1 + ai+1si+1 + · · ·+ ansn)

= b

Thus every solution belongs to the set S and every element of the set S is a
solution to the linear equation concluding this part of the argument.
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Suppose now all ai’s are zero that is a1 = 0, a2 = 0 . . .an = 0. For any
n-tuple (s1, . . . , sn) we have

a1s1 + · · ·+ ansn = 0s1 + · · ·+ 0sn = 0(s1 + · · ·+ sn) = 0

Therefore if b = 0 every n-tuple is a solution. If b 6= 0 the equation has no
solution, concluding the argument.

Example: the solution to 0x1 + 2x2 + x3 = 3 is the set{(
s1,

3− s2
2

, s2

)
| s1, s2 ∈ K

}
⊆ K3.

The description of the solution set is not unique. The same set – the set of
solution for this equation can also be given as

{(t1, t2, 3− 2t2) | t1, t2 ∈ K} ⊆ K3

Remark. Typically in case there is a non-zero coefficient the solution set is
described using the smallest index i for which ai is non-zero. For the above ex-
ample it means the solution set is described with the former description instead
of the latter.

Example: the solution to 0x1 + 0x2 = 0 is {(s1, s2) | s1, s2 ∈ K} ⊆ K2

Example: the solution to 0x1 + 0x2 + 0x3 + 0x4 = 2 is the empty set ∅ ⊆ K4

in other words it has no solution, in other words the equation is inconsistent.

Example: the solution to 2x1 = 6 is the set with single element 3 ∈ K1. It is
sometimes called singleton, the set can be denoted by {3} ⊆ K1.

1.2 System of linear equations

Definition 5 (system of linear equations). A system of linear equation is a set of
linear equations in the same set of variables X = {x1, . . . , xn}:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Definition 6 (solution to a system of linear equations). An n-tuple (s1, . . . , sn) ∈
Kn is a solution to a linear system of equations if it is solution for each equation.
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Remark: The above definition implies that the set of solutions to a system of
linear equations is the intersection of the sets of solutions for each equation in
the system of linear equations.

Example: (x1, x2) = (7, 8) is a solution to the system

10x1 + 7x2 = 126

5x1 + 11x2 = 123

Example: (−2, 5, 0) and (0, 4,−1) are both solutions to

x1 + x2 + x3 = 3

2x1 + x2 + 3x3 = 1

Example: For arbitrary values s1 and s2

x1 = s2 − s1 + 1

x2 = s2 + s1 + 2

x3 = s1

x4 = s2

is a solution to

x1 − 2x2 + 3x3 + x4 = −3

2x1 − x2 + 3x3 − x4 = 0

We can write the set as

{(s2 − s1 + 1, s2 + s1 + 2, s1, s2) | s1, s2 ∈ K} ⊆ K4

In some cases we may end up with a set of solutions that is empty. For example
the system

x1 − x2 + 3x3 + x4 = 3

x1 − x2 + 3x3 + x4 = 0

has no solution (the solution set is empty). In this case we say the system is
inconsistent. Observe that in the above system of linear equation each equation
on its own is consistent but the system of linear equations has no solution. The
reason is that the equations have solutions

S1 = {(3 + s1 − 3s2 + s3, s1, s2, s3) | s1, s2, s3 ∈ K} ⊆ K4

S2 = {(t1 − 3t2 + t3, t1, t2, t3) | t1, t2, t3 ∈ K} ⊆ K4

respectively, but S1 ∩ S2 = ∅.

Definition 7. [inconsistent consitent] A system of linear equations is inconsistent if
it has no solutions; otherwise it is consistent.
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Example: here is another inconsistent system of linear equations.

2x1 +2x2 +3x3 +3x4 +x6 = 3
x3 +2x4 +x5 = −2

7x4 +x5 = 1
−x5 +2x6 = 0

0 = 1

Definition 8 (homogeneous system of equations). A system of equations is called
homogeneous if each equation is homogeneous.

Every system of linear equations S in variables X = {x1, . . . , xn}

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

has a corresponding homogeneous system of linear equation, which is in the
same set of variable and obtained by changing the constant of every equation
to zero namely,

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0.

Example: For the non-homogeneous system of linear equations.

2x1 +2x2 +3x3 +3x4 +x6 = 3
x3 +2x4 +x5 = −2

7x4 +x5 = 1
−x5 +2x6 = 0

0 = 1

the corresponding homogeneous system of linear equations is

2x1 +2x2 +3x3 +3x4 +x6 = 0
x3 +2x4 +x5 = 0

7x4 +x5 = 0
−x5 +2x6 = 0

0 = 0

Remark: any homogeneous system of linear equations and its corresponding
homogeneous system of linear equations are the same.
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1.3 Equivalent systems

Definition 9. Two systems of equations S1 and S2 are equivalent if they have the
same set of solutions.

Example: For example

S1 :

 x1 − 2x2 + 3x3 + x4 = −3
x1 − 2x2 + 3x3 + x4 = −3
2x1 − x2 + 3x3 − x4 = 0

, S2 :

 x1 − 2x2 + 3x3 + x4 = −3
2x1 − x2 + 3x3 − x4 = 0
2x1 − x2 + 3x3 − x4 = 0

and

S3 :

 2x1 − x2 + 3x3 − x4 = 0
x1 − 2x2 + 3x3 + x4 = −3
2x1 − x2 + 3x3 − x4 = 0

have the same set of solutions:

x1 = s2 − s1 + 1

x2 = s2 + s1 + 2

x3 = s1

x4 = s2

Here s1, s2 ∈ K. The following system while closely related is not equivalent
to the above system of linear equations as it has a unique solution:

x1 − 2x2 + 3x3 + x4 = −3

2x1 − x2 + 3x3 − x4 = 0

x3 = 0

x4 = 0

given by the singleton
(1, 2, 0, 0)

Consider the following two systems of linear equations:

Sx :

{
x1 − 2x2 + 3x3 + x4 = −3

4x1 − 5x2 + 9x3 + x4 = −6

and

Sy :

{
y1 − 2y2 + 3y3 + y4 = −3

4y1 − 5y2 + 9y3 + y4 = −6

These are trivially equivalent as Sx is in variables {x1, x2, x3, x4} and Sy is in
{y1, y2, y3, y4}. Thus as far as set of solutions is concerned (which is what we
are interested in), is carried by the coefficients and the constants of each equa-
tion; the variables’ labels are irrelevant. We will therefore represent system of
linear equations via matrices.
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1.4 Matrices and vectors

Definition 10 (matrix). An m× n matrix A = {aij}1≤i≤m,1≤j≤n is a rectangular
array of numbers with m rows and n columns. Each number in the matrix is called an
entry.

Examples: The matrix M1 is a 3× 5, the matrix M2 is a 5× 3 matrix:

M1 =

 4 1 0 −1 9
5 2 1 7 1
−3 0 5 8 1

 M2 =


8 10 −6
2 4 0
0 2 10
−2 14 16
18 2 2


The following is not a matrix:

1 2 3 4 5
1 2 3
1 2 3 4 5
1 2 3


Definition 11 (equal matrices). Let

A = {aij}1≤i≤m,1≤j≤n and B = {bij}1≤i≤r,1≤j≤p

be two matrices. We say thatA = B ifm = r, n = p and for all 1 ≤ i ≤ m, 1 ≤ j ≤ n
we have that aij = bij

Example: The matrix M1 is equal to itself but it is not equal to the matrix
given by  4 1 0 −1 9 0

5 2 1 7 1 0
−3 0 5 8 1 0


Definition 12 (square matrix). An m × n matrix is called square of order m if
m = n.

Example: The matrix M3 is a 3× 3, i.e. a square matrix of order three:

M3 =

 1 0 −1
2 1 7
0 5 8


Definition 13 (row vector). An 1× n matrix is called a row vector. The entries in
a vector are also called components.
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Example: a row vector with five components

~r = (4, 1, 0, −1, 9)

Definition 14 (column vector). An m× 1 matrix is called a column vector.2

Example: a column vector with five components

~c =


4
1
0
−1

9


Remark: ~c 6= ~r.

1.5 Representations of system of linear equations

Definition 15 (coefficient matrix and augmented matrix of a system of linear
equations). Let S be a system of linear equations in {x1, . . . , xn} given by

a11x1 +a12x2 + · · · +a1nxn = b1
a21x1 +a22x2 + · · · +a2nxn = b2

...
am1x1 +am2x2 + · · · +amnxn = bm.

Let A be the m × n matrix with entry ij equal aij and b is a column vector with ith
component bi. The matrix A is called the (coefficient) matrix of the system. The
augmented matrix of the system (A|b) is the m× (n+ 1) matrix with ij entry equal
aij if j ≤ n and bi otherwise. That is

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

. . .
am1 am2 · · · amn

 (A|b) =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

. . .
am1 am2 · · · amn bm


Example: For the system of linear equations

x1 +3x2 +3x3 +2x4 +x5 = 7
3x1 +9x2 −6x3 +4x4 +3x5 = −7
2x1 +6x2 −4x3 +2x4 +2x5 = −4

2Often instead of a column vector we will say only a vector.
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the matrix of the system is  1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2


and its augmented matrix is 1 3 3 2 1 7

3 9 −6 4 3 −7
2 6 −4 2 2 −4


Example: For the system of linear equations

2y1 +6y2 −4y3 +2y4 +2y5 = −2
y4 = −1

5y3 +y4 = 9

the matrix is  2 6 −4 2 2
0 0 0 1 0
0 0 5 1 0


the augmented matrix is  2 6 −4 2 2 −2

0 0 0 1 0 −1
0 0 5 1 0 9


Example: For the system of linear equations

4

7
x1 + 6x2 + 9x3 = 0

4x2 − 12x3 = 0

12x1 = 0

0 = 1

the matrix of the system is 
4
7 6 9
0 4 −12

12 0 0
0 0 0


and the augmented matrix is

4
7 6 9 0
0 4 −12 0

12 0 0 0
0 0 0 1


13



Definition 16 (vector representation of a system of linear equations). Let S be a
system of linear equations in {x1, . . . , xn} given by

a11x1 +a12x2 + · · · +a1nxn = b1
a21x1 +a22x2 + · · · +a2nxn = b2

...
am1x1 +am2x2 + · · · +amnxn = bm.

The vector representation of the system is
a11
a21

...
am1

x1 +


a12
a22

...
am2

x2 + · · ·+


a1n
a2n

...
amn

xn =


b1
b2
...
bm


Example: For the system

x1 +3x2 +3x3 +2x4 +x5 = 7
3x1 +9x2 −6x3 +4x4 +3x5 = −7
2x1 +6x2 −4x3 +2x4 +2x5 = −4

the corresponding vector representation is 1
3
2

x1 +

 3
9
6

x2 +

 3
−6
−4

x3 +

 2
4
2

x4 +

 1
3
2

x5 =

 7
−7
−4


Example: For the system of linear equations

4

7
x1 + 6x2 + 9x3 = 0

4x2 − 12x3 = 0

12x1 = 0

0 = 1

the vector form is
4
7
0

12
0

x1 +


6
4
0
0

x2 +


9

−12
0
0

x3 =


0
0
0
1


1.6 Echelon form and back substitution

Definition 17 (leading (basic) variable). In each row of a system, the first variable
with a nonzero coefficient is the row’s leading (basic) variable.
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Definition 18 (Echelon form). A system is in Echelon form if each leading variable
is to the right of the leading variable in the row above it, except for the leading variable
in the first row, and any all-zero rows are at the bottom.

Note: The above form we well call Upper Triangular form as many software
tools call Echelon form the Reduced Echelon form which will be discussed a
bit later in this text.

Example: The system of linear equations

x1 + 3x2 + 3x3 + 2x4 = 1

2x1 + 6x2 + 9x3 + 5x4 = 3

−x1 − 3x2 + 3x3 = 1

is not in Echelon Form. It has overall one leading variable namely x1.

Example: The system of linear equations

x1 + 3x2 + 3x3 + 2x4 = 1

3x3 + 4x4 = 1

0 = 0

is in Echelon form and x1 and x3 are the leading variables. There are no other
leading variables.

Definition 19 (free variable). The non-leading variable in an Echelon form are called
free variables.

In Echelon form a system can be easily solved (say using a computer) us-
ing back-substitution, which is essentially going from the bottom equation and
moving up. At each stage the current set of solutions is intersected with the set
of solution that satisfy the equation that is processed. To solve a single equa-
tion with more that one variable assigns a parameter to each free variable and
represent the leading variable via the assigned parameters. Consider

2x1 +2x2 +3x3 +3x4 +x6 = 3
x3 +2x4 +x5 = −2

7x4 +x5 = 1
−x5 +2x6 = 0

From the last equation x5 is leading and x6 is free variable. We assign x6 a
parameter, say s1 ∈ K. Then

x5 = 2s1

x6 = s1

15



after rewriting the last equation and substituting x6 with its parameter. We
now move to the equation above the last one. Here x4 is leading variable. We
have computed x5 and therefore writing x4 in terms of x5 and x6 we obtain

x4 =
1

7
− 2

7
s1

x5 = 2s1

x6 = s1

Moving one equation up with leading variable x3, we now know the values of
x4, x5 and x6. Expressing x3 with the knowledge we have so far we obtain

x3 = −2− 2

7
+

4

7
s1 − 2s1 = −16

7
− 10

7
s1

x4 =
1

7
− 2

7
s1

x5 = 2s1

x6 = s1

It remains to look at the first equation. Here we see a new free variable that we
did not encounter so far, namely x2 and x1 is leading variable. Just as we did
for x6 we assign a parameter for x2 say s2. Note that the values of s2 and s1 are
independent from each other, so now we have

x2 = s2

x3 = −16

7
− 10

7
s1

x4 =
1

7
− 2

7
s1

x5 = 2s1

x6 = s1;

and with this information we can also express x1 as

2x1 = 3− 2s2 − 3

(
−16

7
− 10

7
s1

)
− 3

(
1

7
− 2

7
s1

)
− s1

=
66

7
− 2s2 +

29

7
s1

to get the complete set of solutions as

x1 =
66

14
− s2 +

29

14
s1

x2 = s2

x3 = −16

7
− 10

7
s1

x4 =
1

7
− 2

7
s1

x5 = 2s1

x6 = s1;
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The set of solution can be represented in the so called vector form



66
14
0

16
7
1
7
0
0

+


−1

1
0
0
0
0

 s2 +



29
14
0

− 10
7
− 2

7
2
1

 s1 | s1, s2 ∈ K


Observe that even though the system given by

2x1 + x2 + 3x3 + 3x4 + x6 + 7x7 + 9x8 = 1

5x1 + 9x2 + 5x3 + 3x4 + x5 + x6 + 7x7 + 9x8 = 2

3x1 + 7x2 + 3x3 + 7x4 + x5 + x6 + 6x7 + 9x8 = 3

3x1 + x3 + 3x4 + x6 + 7x7 + 9x8 = 4

with augmented matrix
2 1 3 3 0 1 7 9 1
5 9 5 3 1 1 7 9 2
3 7 3 7 1 1 6 9 3
3 0 1 3 0 1 7 9 4


seems simpler in terms constants involved, it is nevertheless harder to solve
compared to

x1 −
1

157
x5 +

28

157
x6 +

217

157
x7 +

252

157
x8 =

192

157

x2 +
23

157
x5 −

16

157
x6 −

124

157
x7 −

144

157
x8 = − 20

157

x3 −
12

157
x5 +

22

157
x6 +

341

314
x7 +

198

157
x8 = −259

314

x4 +
5

157
x5 +

17

157
x6 +

185

314
x7 +

153

157
x8 =

121

314

with augmented matrix
1 0 0 0 − 1

157
28
157

217
157

252
157

192
157

0 1 0 0 23
157 − 16

157 − 124
157 − 144

157 − 20
157

0 0 1 0 − 12
157

22
157

341
314

198
157 − 259

314
0 0 0 1 5

157
17
157

185
314

153
157

121
314

 .

Indeed back substitution applies to easily to the second system but no general
procedure can be applied to the first. Consequently, to solve a system of linear
equation we need a method to transform it into an equivalent system that is in
Echelon form.
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1.7 Row operations as matrix multiplication

Recall the system

x1 +3x2 +3x3 +2x4 +x5 = 7
3x1 +9x2 −6x3 +4x4 +3x5 = −7
2x1 +6x2 −4x3 +2x4 +2x5 = 4

From the system we can obtain new equations by combining existing equa-
tions: for example by adding 2 times Equation 1 to Equation 3 we obtain

4x1 +12x2 +2x3 +6x4 +4x5 = 18

by adding negative 2 times Equation 1 to Equation 2 we obtain

x1 +3x2 −12x3 +x5 = −21

by adding Equation 2 to itself we obtain

6x1 +18x2 −12x3 +8x4 +6x5 = −14

by adding negative 2 times Equation 2 to Equation 3 we obtain

−4x1 −12x2 +8x3 −6x4 −4x5 = 18

by adding negative 2 times Equation 1 to Equation 3 we obtain

−10x3 −2x4 = −10

As a result we obtain a new system of linear equations

4x1 +12x2 +2x3 +6x4 +4x5 = 18
x1 +3x2 −12x3 +x5 = −21

6x1 +18x2 −12x3 +8x4 +6x5 = −14
−4x1 −12x2 +8x3 −6x4 −4x5 = 18

−10x3 −2x4 = −10

We want to encode such transformation so that there is an easy and conve-
nient way to work just with the (augmented) matrices of the system of linear
equation. Note that adding negative 2 times Equation 1 to Equation 3, adding
negative 2 times Equation 1 to Equation 3 and adding negative 2 times Equa-
tion 2 to Equation 3, appear to have the same constants (−2, 1) we want to
distinguish between those so rather than saying we add negative two times
Equation 1 to Equation 3 we will say add negative two times Equation 1 to zero
times Equation 2 to one times Equation 3. Then we can distinguish between the
combinations (−2, 0, 1), (−2, 1, 0) and (0,−2, 1). Thus we can encode the above
transformation in a matrix

rowcomb =


2 0 1
−2 1 0

0 2 0
0 −2 1
−2 0 1

 .
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In matrix rowcomb the first raw indicates that we take 2 times Equation 1, add
zero times Equation 2, add 1 times Equation 3. We can have as many such com-
binations as we want. To identify on which system we apply those operations
we write 

2 0 1
−2 1 0

0 2 0
0 −2 1
−2 0 1


 1 3 3 2 1 7

3 9 −6 4 3 −7
2 6 −4 2 2 −4


The result is a system of linear equation with matrix

4 12 2 6 4 10
1 3 −12 0 1 −21
6 18 −12 8 6 −14
−4 −12 8 −6 −4 10

0 0 −10 −2 0 −18


We call this procedure matrix multiplication:

2 0 1
−2 1 0

0 2 0
0 −2 1
−2 0 1


 1 3 3 2 1 7

3 9 −6 4 3 −7
2 6 −4 2 2 −4

 =


4 12 2 6 4 10
1 3 −12 0 1 −21
6 18 −12 8 6 −14
−4 −12 8 −6 −4 10

0 0 −10 −2 0 −18


Observe that the first row of the right side is 2× Eqn1 + 0× Eqn2 + 1× Eqn3
in particular it is expressed as a linear combination of the rows the augmented
matrix of the original system of linear equations. The restriction that we place
when multiplying matrices AB = C in that case is that we require that the
number of columns of A equals the number of rows of B. In other words we
can obtain as many new equations as we want (number of rows of A is the
same as the number of rows of C). We may have as many variables as we want
(number of columns of B equals number of columns of C). The result C has its
rows represented as linear combinations of the rows of B.

1.7.1 Matrix operations

Previously, we considered row operations and worked towards representing
the combinations of equations via matrices. We required multiplication of an
equation with a scalar (recall an equation corresponds to a row in the aug-
mented matrix, thus it is simply a row vector). We needed addition of two
equations. And lastly we multiplied matrices to obtain the result. Multiplying
equation with a scalar requires that each coefficient is multiplied by the said
scalar. Generalized to matrices we get

Definition 20 (scalar matrix multiplication). Let A = {aij} be a m × n matrix
and c be a constant. We define cA as the m×n with entries {caij} for 1 ≤ i ≤ m and
1 ≤ j ≤ n.

19



Example:

2


2 0 1
−2 1 0

0 2 0
0 −2 1
−2 0 1

 =


4 0 2
−4 2 0

0 4 0
0 −4 2
−4 0 2


When adding two equations we added constants in front of variables, which

in vector forms is simple component-wise addition (note the row vectors must
have the same number of components). Generalizing to matrix addition we get

Definition 21 (matrix addition). Let A = {aij} and B = {bij} be a two m × n
matrices. Define A + B as the m × n matrix with entries {aij + bij} for 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

Example: 1 3 3 2
3 9 −6 4
2 6 −4 2

+

 3 0 3 1
−8 1 −6 0

4 1 2 5

 =

 4 3 6 3
−5 10 −12 4

6 7 −2 7


Lastly, from the way we wrote the transformation via the augmented ma-

trices we can define

Definition 22 (matrix multiplication). Let

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

 B =


b11 b12 . . . b1k
b21 b22 . . . b2k

...
bn1 bn2 . . . bnk

 ,

Define C = AB by cuv =

n∑
i=1

auibiv .

Example:

 1 3 3 2 1
3 9 0 4 0
2 3 −4 2 4




3 −8
0 1
3 −6
1 0
2 −3

 =

 16 −26
13 −15
4 −1



Remark: we emphasize the difference between scalar multiplication and ma-
trix multiplication: if A is a n×m matrix with n > 1 then αA is defined for any
scalar α but [α]A is not defined, where [α] denotes the 1 × 1 matrix with entry
α.
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Definition 23 (linear combination of vectors). A linear combination of vectors
~v1 . . . ~vn is an expression of the form

a1~v1 + a2~v2 + · · ·+ an~vn,

where ai’s are coefficients and belong to K.

In matrix multiplication AB = C we have that rows of C are linear combi-
nations of rows of B; also columns of C are linear combinations of columns of
A.

Example: consider the matrix multiplication 0 5 −2 −1
−1 2 3 0

2 −4 2 4




1 −3
−2 2
−1 −2

2 −3

 =

 −10 17
−8 1
16 −30


for the second column of the result we have

(−3)

 0
−1

2

+ 2

 5
2
−4

+ (−2)

 −2
3
2

+ (−3)

 −1
0
4

 =

 17
1

−30


for the third row of the result we have

2 (1, −3) + (−4) (−2, 2) + 2 (−1, −2) + 4 (2, −3) = (16, −30)

Matrix representation of SLE: From the vector form of a system of linear
equation we can write its matrix form A~x = ~b where A is the coefficient matrix
of the system.

Example: for the system of lineary equation

x1 + 3x2 + 3x3 + 2x4 = −3

3x1 + 9x2 − 6x3 + 4x4 = 2

2x1 + 6x2 − 4x3 + 2x4 = 5

‘ which has vector form 1
3
2

x1 +

 3
9
6

x2 +

 3
−6
−4

x3 +

 2
4
2

x4 =

 −3
2
5


has matrix representation 1 3 3 2

3 9 −6 4
2 6 −4 2




x1
x2
x3
x4

 =

 −3
2
5


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and very often the vector of variables is not written in a long i.e. the matrix
representation is  1 3 3 2

3 9 −6 4
2 6 −4 2

 ~x =

 −3
2
5

 .

Properties. Scalar matrix multiplication and matrix matrix addition has some
similarities with the usual addition and multiplication with real numbers. In
terms of matrix addition, whenever two matrices can be added the following
are satisfied:

• A+B = B +A

• A+ (B + C) = (A+B) + C

Furthermore there is a zero matrix 0m×n, whose entries are all zeroes such that
A + 0m×n = 0m×n + A = A. Similarly, for every matrix A there is a matrix B
such that A+B = 0m×n. Typically B is denoted via −A.

Note: It is important to observe that to add two matrices they must have the
same number of rows and columns. However, to multiply two matrices the
number of columns of the first matrix must equal the number of rows of the
second matrix. So it is possible to add two 2× 5 matrices, but it is not possible
to multiply them. It is possible to multiply a 2 × 5 by a 5 × 2 matrix. In that
sense it is not always possible to multiply a matrix A with itself (e.g., if A is a
2× 5 matrix). However it is possible to multiply A by its transpose.

Definition 24 (transpose). Let A = {aij} be a m × n matrix. The transpose of A
denoted by AT is a n × m matrix {aTuv}, where aTuv = avu for all 1 ≤ u ≤ n and
1 ≤ v ≤ m.

Example: the matrix  1 3 3 2 1
3 9 0 4 0
2 3 −4 2 4


has transpose 

1 3 2
3 9 3
3 0 −4
2 4 2
1 0 4

 .

Special class of matrices: the following definitions are often encountered in
practice:

Definition 25 (square matrix). An n×n matrix is called a square matrix. Often it
is called square matrix of order n.
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Example: a square matrix of order three 24 38 7
38 106 41
7 41 49


and order five 

14 36 −5 18 9
36 99 −3 48 15
−5 −3 25 −2 −13
18 48 −2 24 10
9 15 −13 10 17

 .

Definition 26 (lower triangular matrix). Let A = {aij} be an n× n matrix. If for
all 1 ≤ i < j ≤ n we have that aij = 0 then A is called a lower triangular matrix.

In other words all elements above the diagonal are all zero.

Example: 
2 0 0 0
1 2 0 0
4 −5 2 0
3 0 1 −1


Definition 27 (upper triangular matrix). Let A = {aij} be an n× n matrix. If for
all 1 ≤ j < i ≤ n we have that aij = 0 then A is called a upper triangular matrix.

In other words all elements below the diagonal are all zero.

Example: 
2 −1 3 1
0 3 1 0
0 0 0 2
0 0 0 7


Definition 28 (diagonal matrix). Let A = {aij} be an n × n matrix. If A is both
lower and upper triangular then A is called a diagonal matrix.

Example: 
−3 0 0 0

0 0 0 0
0 0 1 0
0 0 0 2


Definition 29 (scalar matrix). Let A = {aij} be an n × n matrix. If A is diagonal
and all its diagonal entries are equal then A is called a scalar matrix.
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Example: 
−2 0 0 0 0

0 −2 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 0 0 −2


Definition 30 (identity matrix). The scalar matrix with diagonal entries equal to 1
is called the identity matrix and denoted by I .

Example:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Properties of matrix multiplication:

• AB 6= BA, in fact one of the multiplications may not even exist! Matrix
multiplication is not commutative in general.

• A(BC) = (AB)C

• A(B + C) = AB +AC – multiplication is left distributive over addition.

• (B+C)D = BD+CD – multiplication is right distributive over addition.

• AI = IA = A – left and right I may not be the same

With real numbers if ab = 0 then it must be the case that a = 0 or b = 0.
However with matrices this is not the case. If for a non-zero square matrix A
there exists a non-zero matrix B such that AB = 0m×n then A is called a zero
divisor.

Example Let A =

(
1 0
0 0

)
, B =

(
0 0
1 0

)
then AB =

(
0 0
0 0

)
. Both A

and B happen to be zero divisors.

Example

A =

(
2 1
−4 −2

)
B =

(
3 2
−6 −4

)
AB =

(
0 0
0 0

)
Both A and B are zero divisors.

Definition 31 (inverse and invertible matrix). A square matrix A is called invert-
ible if there is matrix B such that BA = I . The matrix B is called the inverse of A
and denoted by A−1.
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Example: the inverse of matrix

A =

 5 −8 1
3 −5 1
−4 7 −1


is matrix

A−1 =

 2 1 3
1 1 2
−1 3 1

 .

Theorem 2. If AB = I then BA = I .

Proof. Assume by contradiction that BA 6= I . Then multiplying both sides on
the right by B we obtain (BA)B 6= IB. The right hand side due to associa-
tivity of matrix multiplication is B(AB) and since AB = I we have (BA)B =
B(AB) = BI = B. On the left hand side we have IB = B thus we obtain
B 6= B a contradiction. Therefore BA = I .

Theorem 3. If A is invertible matrix then the inverse of A is unique.

Proof. Suppose AC = I and AD = I . By Theorem 2 we have AD = DA = I .
Since D is a right inverse of A, then D is also a left inverse of A. Left and right
inverses are equal thus the right inverse of A which is C equals the left inverse
which is D, so C = D completing the argument.

D = DI = D(AC) = (DA)C = IC = C

Theorem 4. If for a matrix A there exists matrices B and C such that AB = I and
AC = 0 then C = 0, where 0 is the zero matrix.

Proof. If AB = I then by Theorem 2 BA = I .

AC = 0k×k ⇒ B(AC) = B0k×k ⇒ (BA)C = 0k×k ⇒ IC = 0k×k ⇒ C = 0k×k

1.8 Gauss’ method

We can solve a system of linear equations using back-substitution, but only if
the system is in Echelon form. The next theorem gives us a way to transform a
system of linear equations into Echelon form.

Theorem 5. [Gauss’ method] If a linear system S is changed to another S′ by one of
these operations:

1. an equation is swapped with another
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2. an equation has both sides multiplied by a non-zero constant

3. an equation is replaced by the sum of itself and a multiple of another

then the two system of equations have the same set of solutions.

Proof. 1. Exercise

2. Homework question

3. We have to show two the set of solution for S is the same as the set of
solution for S′. To show equality of two sets we show that every element
from the first set is also an element of the second set and then show that
every element of the second set is an element of the first set.

S ⊆ S′: Suppose s1, s2, . . . , sn is a solution to S then

S :


a11s1 +a12s2 + · · · +a1nsn = b1
a21s1 +a22s2 + · · · +a2nsn = b2

...
am1s1 +am2s2 + · · · +amnsn = bm

,

and therefore in S′ for each k 6= j we have

ak1s1 + ak2s2 + · · ·+ aknsn = bk.

It remains to verify that

a′j1s1 + a′j2s2 + · · ·+ a′jnsn = b′j . (1.1)

Without loss of generality suppose S′ was obtained from S by adding c
times equation t to equation j in S. That is a′ji = aji + cati for 1 ≤ i ≤ n,
and b′j = bj + cbt. For Equation 1.1 we then have

a′j1s1 + a′j2s2 + · · ·+ a′jnsn = (aj1 + cat1)s1 + (aj2 + cat2)s2 + · · ·
· · ·+ (ajn + catn)sn

= aj1s1 + aj2s2 + · · ·+ ajnsn

+cat1s1 + cat2s2 + · · ·+ catnsn

= aj1s1 + aj2s2 + · · ·+ ajnsn

+c(at1s1 + at2s2 + · · ·+ atnsn)

= bj + cbt = b′j .

Thus s1, . . . , sn is also a solution to S′.
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S ⊇ S′ Conversely, suppose s′1, s′2, . . . , s′n is a solution to S′ then

S′ :



a11s
′
1 +a12s

′
2 + · · · +a1ns

′
n = b1

...
a′j1s

′
1 +a′j2s

′
2 + · · · +a′jns

′
n = b′j

...
am1s

′
1 +am2s

′
2 + · · · +amns

′
n = bm

,

and therefore in S for each k 6= j we have

ak1s1 + ak2s2 + · · ·+ aknsn = bk.

It remains to verify that

aj1s1 + aj2s2 + · · ·+ ajnsn = bj . (1.2)

Without loss of generality suppose S′ was obtained from S by adding c
times equation t to equation j in S. That is a′ji = aji+cati for 1 ≤ i ≤ n or
aji = a′ji−cati, and b′j = bj+cbkk implying bj = b′j−cbt. For Equation 1.2
we then have

aj1s
′
1 + aj2s

′
2 + · · ·+ ajns

′
n = (a′j1 − cat1)s′1 + (a′j2 − cat2)s′2 +

+ · · ·+ (a′jn − catn)s′n

= a′j1s
′
1 + a′j2s

′
2 + · · ·+ a′jns

′
n

−cat1s′1 − cat2s′2 − · · · − catns′n

= a′j1s
′
1 + a′j2s

′
2 + · · ·+ a′jns

′
n

−c(at1s′1 + at2s
′
2 + · · ·+ atns

′
n)

= b′j − cbt = bj .

Thus s′1, . . . , s′n is also a solution to S.

Therefore S and S′ have the same set of solutions.

Definition 32 (elementary row operations). The elementary row operations,
(also row operations, Gaussian operations) are

1. row swapping

2. rescaling (multiplication with a non-zero constant)

3. row combinations (adding a multiple of another row)
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Reducing to Echelon form: a system of linear equations in Echelon form is
easy to solve, by the above mentioned back substitution. One procedure to ob-
tain an equivalent system of linear equations to ensure by swapping equation
that the leading variable of the first equation call it x is not to the right of any
leading variable of the remaining equations. Then by adding suitable multi-
ples of the first equation to the other equations so that the coefficient in front
of x in the all equations except the first one are zero. The same procedure is
recursively applied to the system linear equation that is obtained by removing
the first equation. Until a single equation remains at which stage the procedure
terminates. It is important to note that all the operations that were performed
are elementary row operations. Thus by Theorem 5 all the system of equations
are equivalent (that is they have the same set of solutions).

1.8.1 Gauss’ method example:

recall the system

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

3x1 + 9x2 − 6x3 + 4x4 + 3x5 = −7

2x1 + 6x2 − 4x3 + 2x4 + 2x5 = −4

with augmented matrix  1 3 3 2 1 7
3 9 −6 4 3 −7
2 6 −4 2 2 −4


Step 1: add negative three times equation one to equation two to get

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

−15x3 − 2x4 = −28

2x1 + 6x2 − 4x3 + 2x4 + 2x5 = −4

represented as matrix multiplication 1 3 3 2 1 7
0 0 −15 −2 0 −28
2 6 −4 2 2 −4

 =

 1 0 0
−3 1 0

0 0 1

 1 3 3 2 1 7
3 9 −6 4 3 −7
2 6 −4 2 2 −4

 .

Step 2: add negative two times equation one to equation three to get

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

−15x3 − 2x4 = −28

−10x3 − 2x4 = −18
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represented as matrix multiplication 1 3 3 2 1 7
0 0 −15 −2 0 −28
0 0 −10 −2 0 −18

 =

 1 0 0
0 1 0
−2 0 1

 1 3 3 2 1 7
0 0 −15 −2 0 −28
2 6 −4 2 2 −4



Step 3: add
−2

3
times equation two to equation three to get

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

−15x3 − 2x4 = −28

−2

3
x4 =

2

3

represented as matrix multiplication 1 3 3 2 1 7
0 0 −15 −2 0 −28
0 0 0 − 2

3 0 2
3

 =

 1 0 0
0 1 0
0 − 2

3 1

 1 3 3 2 1 7
0 0 −15 −2 0 −28
0 0 −10 −2 0 −18

 .

The system is in Echelon form and can be solved using back substitution. The
solution set is

x1 = 3− 3t1 − t2
x2 = t1

x3 = 2

x4 = −1

x5 = t2

in vector form


3
0
2
−1

0

+


−3

1
0
0
0

 t1 +


−1

0
0
0
1

 t2 | t1, t2 ∈ K


The above Echelon form is suitable for back substitution (i.e. it has a “inverted
stair” shape), but we can continue with elementary row operations to obtain
the Reduced Echelon form which allows for even easier way to identify solution
(in many ways finding solution with back substitution involves in a convoluted
way getting the Reduced Echelon form).
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Step 4: scale equation three by
−3

2
to get

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

−15x3 − 2x4 = −28

x4 = −1

represented as matrix multiplication 1 3 3 2 1 7
0 0 −15 −2 0 −28
0 0 0 1 0 −1

 =

 1 0 0
0 1 0
0 0 − 3

2

 1 3 3 2 1 7
0 0 −15 −2 0 −28
0 0 0 − 2

3 0 2
3

 .

Step 5: add two times equation three to equation two to get

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

−15x3 = −30

x4 = −1

represented as matrix multiplication 1 3 3 2 1 7
0 0 −15 0 0 −30
0 0 0 1 0 −1

 =

 1 0 0
0 1 2
0 0 1

 1 3 3 2 1 7
0 0 −15 −2 0 −28
0 0 0 1 0 −1


Step 6: scale equation two by

−1

15
to get

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

x3 = 2

x4 = −1

represented as matrix multiplication 1 3 3 2 1 7
0 0 1 0 0 2
0 0 0 1 0 −1

 =

 1 0 0
0 − 1

15 0
0 0 1

 1 3 3 2 1 7
0 0 −15 0 0 −30
0 0 0 1 0 −1

 .

Step 7: add negative three times equation two to equation one to get

x1 + 3x2 + 2x4 + x5 = 1

x3 = 2

x4 = −1
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represented as matrix multiplication 1 3 0 2 1 1
0 0 1 0 0 2
0 0 0 1 0 −1

 =

 1 −3 0
0 1 0
0 0 1

 1 3 3 2 1 7
0 0 1 0 0 2
0 0 0 1 0 −1

 .

Step 8: add negative two times equation three to equation one to get

x1 + 3x2 + x5 = 3

x3 = 2

x4 = −1

represented as matrix multiplication 1 3 0 0 1 3
0 0 1 0 0 2
0 0 0 1 0 −1

 =

 1 0 −2
0 1 0
0 0 1

 1 3 0 2 1 1
0 0 1 0 0 2
0 0 0 1 0 −1

 .

Reduced Echelon form The above equation is in Reduced Echelon form, mean-
ing that

1. the system is in Echelon form;

2. the coefficients in front of leading variables is each one;

3. every leading variable appears in exactly one equation.

With the Reduced Echelon form performing Back Substitution requires no ex-
tra computation. Many software tool that provide routines for Gaussian elim-
ination when called upon produce in fact the Reduced Echelon Form. Some
linear algebra texts identify the Reduced Echelon form with the Echelon form.
From now on when we say Echelon form we will mean Reduced Echelon form.
In rare cases when the inverted stair shape is asked for or needed it will be
made explicit.

As said with the Reduced Echelon form it is easier to identify the solution.
It is also useful when you need to solve multiple SLEs with the same coefficient
matrix.

1.8.2 Inconsistent system of linear equation

Consider the following system of linear equations

x1 + 3x2 + 3x3 + 2x4 = 1

2x1 + 6x2 + 9x3 + 5x4 = 3

−x1 − 3x2 + 3x3 = 2
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with augmented matrix  1 3 3 2 1
2 6 9 5 3
−1 −3 3 0 2


Step 1: add −2 times equation one to equation two

x1 + 3x2 + 3x3 + 2x4 = 1

3x3 + x4 = 1

−x1 − 3x2 + 3x3 = 2

represented as matrix multiplication 1 3 3 2 1
0 0 3 1 1
−1 −3 3 0 2

 =

 1 0 0
−2 1 0

0 0 1

 1 3 3 2 1
2 6 9 5 3
−1 −3 3 0 2

 .

Step 2: add 1 times equation one to equation three

x1 + 3x2 + 3x3 + 2x4 = 1

3x3 + x4 = 1

6x3 + 2x4 = 3

represented as matrix multiplication 1 3 3 2 1
0 0 3 1 1
0 0 6 2 3

 =

 1 0 0
0 1 0
1 0 1

 1 3 3 2 1
0 0 3 1 1
−1 −3 3 0 2

 .

Step 3: add −2 times equation two to equation three

x1 + 3x2 + 3x3 + 2x4 = 1

3x3 + x4 = 1

0 = 1

represented as matrix multiplication 1 3 3 2 1
0 0 3 1 1
0 0 0 0 1

 =

 1 0 0
0 1 0
0 −2 1

 1 3 3 2 1
0 0 3 1 1
0 0 6 2 3

 .
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Step 4: scale equation two by
1

3

x1 + 3x2 + 3x3 + 2x4 = 1

x3 +
1

3
x4 =

1

3
0 = 1

represented as matrix multiplication 1 3 3 2 1
0 0 1 1

3
1
3

0 0 0 0 1

 =

 1 0 0
0 1

3 0
0 0 1

 1 3 3 2 1
0 0 3 1 1
0 0 0 0 1


Step 5: add −3 times equation two to equation one

x1 + 3x2 + x4 = 0

x3 +
1

3
x4 =

1

3
0 = 1

represented as matrix multiplication 1 3 0 1 0
0 0 1 1

3
1
3

0 0 0 0 1

 =

 1 −3 0
0 1 0
0 0 1

 1 3 3 2 1
0 0 1 1

3
1
3

0 0 0 0 1

 .

The system is in Echelon form. Since the last equation has no solution, the
system of linear equations has no solution, in other words it is inconsistent,
equivalently the solution set is empty or the solutions set equals the empty set
denoted by ∅.

The fact that system of linear equations is inconsistent becomes apparent
after Step 3, however, we as mentioned earlier we will be reducing all our
system of linear equations to Reduced Echelon form.

1.8.3 Another consistent example

Consider the set of equations in Section 1.8.2 but with different constants

x1 + 3x2 + 3x3 + 2x4 = 3

2x1 + 6x2 + 9x3 + 5x4 = 5

−x1 − 3x2 + 3x3 = −5

with augmented matrix  1 3 3 2 3
2 6 9 5 5
−1 −3 3 0 −5

 .
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Step 1: add −2 times equation one to equation two

x1 + 3x2 + 3x3 + 2x4 = 3

3x3 + x4 = −1

−x1 − 3x2 + 3x3 = −5

represented as matrix multiplication 1 3 3 2 3
0 0 3 1 −1
−1 −3 3 0 −5

 =

 1 0 0
−2 1 0

0 0 1

 1 3 3 2 3
2 6 9 5 5
−1 −3 3 0 −5

 .

Step 2: add 1 times equation one to equation three

x1 + 3x2 + 3x3 + 2x4 = 3

3x3 + x4 = −1

6x3 + 2x4 = −2

represented as matrix multiplication 1 3 3 2 3
0 0 3 1 −1
0 0 6 2 −2

 =

 1 0 0
0 1 0
1 0 1

 1 3 3 2 3
0 0 3 1 −1
−1 −3 3 0 −5

 .

Step 3: add −2 times equation two to equation three

x1 + 3x2 + 3x3 + 2x4 = 3

3x3 + x4 = −1

0 = 0

represented as matrix multiplication 1 3 3 2 3
0 0 3 1 −1
0 0 0 0 0

 =

 1 0 0
0 1 0
0 −2 1

 1 3 3 2 3
0 0 3 1 −1
0 0 6 2 −2

 .

Step 4: scale equation two by
1

3

x1 + 3x2 + 3x3 + 2x4 = 3

x3 +
1

3
x4 = −1

3
0 = 0
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represented as matrix multiplication 1 3 3 2 3
0 0 1 1

3 − 1
3

0 0 0 0 0

 =

 1 0 0
0 1

3 0
0 0 1

 1 3 3 2 3
0 0 3 1 −1
0 0 0 0 0

 .

Step 5: add −3 times equation two to equation one

x1 + 3x2 + x4 = 4

x3 +
1

3
x4 = −1

3
0 = 0

represented as matrix multiplication 1 3 0 1 4
0 0 1 1

3 − 1
3

0 0 0 0 0

 =

 1 −3 0
0 1 0
0 0 1

 1 3 3 2 3
0 0 1 1

3 − 1
3

0 0 0 0 0

 .

The system is in Echelon form and can be solved using back substitution.
The solution set is

x1 = 4− 3t1 − t2
x2 = t1

x3 = −1

3
− 1

3
t2

x4 = t2

in vector form


4
0
− 1

3
0

+


−3

1
0
0

 t1 +


−1

0
− 1

3
1

 t2 | t1, t2 ∈ K

 .

1.8.4 System of linear equations with shared matrix

The system of linear equations from Section 1.8.2

x1 + 3x2 + 3x3 + 2x4 = 1

2x1 + 6x2 + 9x3 + 5x4 = 3

−x1 − 3x2 + 3x3 = 2
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and the system of linear equations from Section 1.8.3

x1 + 3x2 + 3x3 + 2x4 = 3

2x1 + 6x2 + 9x3 + 5x4 = 5

−x1 − 3x2 + 3x3 = −5

have the same (coefficient) matrix 1 3 3 2
2 6 9 5
−1 −3 3 0

 .

Reduction to Echelon form does not depend on the constants of the equations
so we can combine the two reductions from the previous sections into single
reduction. It can be efficiently done using augmented matrices, namely we
combine the augmented matrix of the first system of linear equations 1 3 3 2 1

2 6 9 5 3
−1 −3 3 0 2


with the augmented matrix of the second system of linear equations 1 3 3 2 3

2 6 9 5 5
−1 −3 3 0 −5


to obtain an augmented matrix for two system of linear equations sharing the
same matrix namely,  1 3 3 2 1 3

2 6 9 5 3 5
−1 −3 3 0 2 −5

 .

To the left of the vertical separator we have the matrix of the system of linear
equation, to its left every column corresponds to a different system of linear
equations whose constants are given by that column.

Step 1: add −2 times equation one to equation two represented as matrix
multiplication 1 3 3 2 1 3

0 0 3 1 1 −1
−1 −3 3 0 2 −5

 =

 1 0 0
−2 1 0

0 0 1

 1 3 3 2 1 3
2 6 9 5 3 5
−1 −3 3 0 2 −5

 .
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Step 2: add 1 times equation one to equation three represented as matrix mul-
tiplication 1 3 3 2 1 3

0 0 3 1 1 −1
0 0 6 2 3 −2

 =

 1 0 0
0 1 0
1 0 1

 1 3 3 2 1 3
0 0 3 1 1 −1
−1 −3 3 0 2 −5

 .

Step 3: add −2 times equation two to equation three represented as matrix
multiplication 1 3 3 2 1 3

0 0 3 1 1 −1
0 0 0 0 1 0

 =

 1 0 0
0 1 0
0 −2 1

 1 3 3 2 1 3
0 0 3 1 1 −1
0 0 6 2 3 −2

 .

Step 4: scale equation two by
1

3
represented as matrix multiplication 1 3 3 2 1 3

0 0 1 1
3

1
3 − 1

3
0 0 0 0 1 0

 =

 1 0 0
0 1

3 0
0 0 1

 1 3 3 2 1 3
0 0 3 1 1 −1
0 0 0 0 1 0

 .

Step 5: add −3 times equation two to equation one represented as matrix
multiplication 1 3 0 1 0 4

0 0 1 1
3

1
3 − 1

3
0 0 0 0 1 0

 =

 1 −3 0
0 1 0
0 0 1

 1 3 3 2 1 3
0 0 1 1

3
1
3 − 1

3
0 0 0 0 1 0

 .

From here we can extract the augmented matrices of the two system of
linear equation. For the first one we have 1 3 0 1 0

0 0 1 1
3

1
3

0 0 0 0 1


which corresponds to

x1 + 3x2 + x4 = 0

x3 +
1

3
x4 =

1

3
0 = 1

For the second one we have augmented matrix 1 3 0 1 4
0 0 1 1

3 − 1
3

0 0 0 0 0


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which corresponds to

x1 + 3x2 + x4 = 4

x3 +
1

3
x4 = −1

3
0 = 0

1.8.5 System of linear equations with unique solution

Consider the system of linear equations

−x2 + x3 = 1

2x1 + 3x2 − 2x3 = 0

x1 + 2x2 − x3 = 0

the system of linear equations

−x2 + x3 = 0

2x1 + 3x2 − 2x3 = 1

x1 + 2x2 − x3 = 0

and the system of linear equations

−x2 + x3 = 0

2x1 + 3x2 − 2x3 = 0

x1 + 2x2 − x3 = 1

They share the same matrix and therefore we will solve them simultane-
ously. Constructing the combined augmented matrix we get 0 −1 1 1 0 0

2 3 −2 0 1 0
1 2 −1 0 0 1

 .

Step 1: swap equation one and equation three, given as matrix multiplication 1 2 −1 0 0 1
2 3 −2 0 1 0
0 −1 1 1 0 0

 =

 0 0 1
0 1 0
1 0 0

 0 −1 1 1 0 0
2 3 −2 0 1 0
1 2 −1 0 0 1

 .
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Step 2: add −2 times equation one to equation two, given as matrix multipli-
cation 1 2 −1 0 0 1

0 −1 0 0 1 −2
0 −1 1 1 0 0

 =

 1 0 0
−2 1 0

0 0 1

 1 2 −1 0 0 1
2 3 −2 0 1 0
0 −1 1 1 0 0

 .

Step 3: scale equation two by −1, given as matrix multiplication 1 2 −1 0 0 1
0 1 0 0 −1 2
0 −1 1 1 0 0

 =

 1 0 0
0 −1 0
0 0 1

 1 2 −1 0 0 1
0 −1 0 0 1 −2
0 −1 1 1 0 0

 .

Step 4: add 1 times equation two to equation three, given as matrix multipli-
cation 1 2 −1 0 0 1

0 1 0 0 −1 2
0 0 1 1 −1 2

 =

 1 0 0
0 1 0
0 1 1

 1 2 −1 0 0 1
0 1 0 0 −1 2
0 −1 1 1 0 0

 .

Step 5: add 1 times equation three to equation one, given as matrix multipli-
cation 1 2 0 1 −1 3

0 1 0 0 −1 2
0 0 1 1 −1 2

 =

 1 0 1
0 1 0
0 0 1

 1 2 −1 0 0 1
0 1 0 0 −1 2
0 0 1 1 −1 2

 .

Step 6: add −2 times equation two to equation one, given as matrix multipli-
cation 1 0 0 1 1 −1

0 1 0 0 −1 2
0 0 1 1 −1 2

 =

 1 −2 0
0 1 0
0 0 1

 1 2 0 1 −1 3
0 1 0 0 −1 2
0 0 1 1 −1 2

 .

From here we can extract the augmented matrices of the two system of
linear equation. For the first one we have 1 0 0 1

0 1 0 0
0 0 1 1


which corresponds to

x1 = 1

x2 = 0

x3 = 1
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The system is in Echelon form and can be solved using back substitution. In
this particular case the above description coincides with the solution set (which
is a singleton). In vector form 

 1
0
1

 .

For the second one we have 1 0 0 1
0 1 0 −1
0 0 1 −1


which corresponds to

x1 = 1

x2 = −1

x3 = −1

The system is in Echelon form and can be solved using back substitution. In
this particular case the above description coincides with the solution set (which
is a singleton). In vector form 

 1
−1
−1

 .

For the third one we have 1 0 0 −1
0 1 0 2
0 0 1 2


which corresponds to

x1 = −1

x2 = 2

x3 = 2

The system is in Echelon form and can be solved using back substitution. In
this particular case the above description coincides with the solution set (which
is a singleton). In vector form 

 −1
2
2


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1.8.6 Observations

Parallelization Consider Step 2 from Section 1.8.4 1 3 3 2 1 3
0 0 3 1 1 −1
0 0 6 2 3 −2

 =

 1 0 0
0 1 0
1 0 1

 1 3 3 2 1 3
0 0 3 1 1 −1
−1 −3 3 0 2 −5


We have that 1 3 3 2

0 0 3 1
0 0 6 2

 =

 1 0 0
0 1 0
1 0 1

 1 3 3 2
0 0 3 1
−1 −3 3 0


and  1 3

1 −1
3 −2

 =

 1 0 0
0 1 0
1 0 1

 1 3
1 −1
2 −5


In general if a matrix M = (C | D) is multiplied with a matrix A that is if

you compute AM the computation can be parallelized by computing AM as
(AC | AD).

Associativity Matrix multiplication is associative operation. Consider Step 1
and Step 2 from Section 1.8.5 1 2 −1 0 0 1

2 3 −2 0 1 0
0 −1 1 1 0 0

 =

 0 0 1
0 1 0
1 0 0

 0 −1 1 1 0 0
2 3 −2 0 1 0
1 2 −1 0 0 1


and 1 2 −1 0 0 1

0 −1 0 0 1 −2
0 −1 1 1 0 0

 =

 1 0 0
−2 1 0

0 0 1

 1 2 −1 0 0 1
2 3 −2 0 1 0
0 −1 1 1 0 0


Using the previous observation for the right side of the separator (the con-

stants of the three system of linear equations) we have 0 0 1
0 1 −2
1 0 0

 =

 1 0 0
−2 1 0

0 0 1

 0 0 1
0 1 0
1 0 0

 1 0 0
0 1 0
0 0 1


For the left side of the separator we have 1 2 −1

0 −1 0
0 −1 1

 =

 1 0 0
−2 1 0

0 0 1

 0 0 1
0 1 0
1 0 0

 0 −1 1
2 3 −2
1 2 −1


=

 0 0 1
0 1 −2
1 0 0

 0 −1 1
2 3 −2
1 2 −1


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In general if we perform Gaussian operations on multiple system of linear
equations as in the previous section at any stage if we have a combined aug-
mented matrix (U | V ) and an initial shared matrix B we have the relations

U = V B

by applying the above procedure to the first n-steps (i.e. apply associativity
of matrix multiplication to first multiply the Gaussian operations into a single
matrix before applying it to the matrix of the system of linear equations).

Here is another example: consider Step 5 from Section 1.8.5 we have a re-
sulting combined augmented matrix 1 2 0 1 −1 3

0 1 0 0 −1 2
0 0 1 1 −1 2


given the initial shared matrix 0 −1 1

2 3 −2
1 2 −1


the following relation holds: 1 2 0

0 1 0
0 0 1

 =

 1 −1 3
0 −1 2
1 −1 2

 0 −1 1
2 3 −2
1 2 −1

 .

The above observation is a basis for computing inverses of matrices.

1.8.7 Reduced Echelon form and inverse

To compute the inverse of matrix 5 −8 1
3 −5 1
−4 7 −1


establish the following three system of linear equation: the first one

5x1 − 8x2 + x3 = 1

3x1 − 5x2 + x3 = 0

−4x1 + 7x2 − x3 = 0

with augmented matrix  5 −8 1 1
3 −5 1 0
−4 7 −1 0


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the second one

5x1 − 8x2 + x3 = 0

3x1 − 5x2 + x3 = 1

−4x1 + 7x2 − x3 = 0

with augmented matrix  5 −8 1 0
3 −5 1 1
−4 7 −1 0


and the third one

5x1 − 8x2 + x3 = 0

3x1 − 5x2 + x3 = 0

−4x1 + 7x2 − x3 = 1

with augmented matrix  5 −8 1 0
3 −5 1 0
−4 7 −1 1

 .

The combined augmented matrix is 5 −8 1 1 0 0
3 −5 1 0 1 0
−4 7 −1 0 0 1


Performing Gaussian eliminations

Step 1: 5 −8 1 1 0 0
0 − 1

5
2
5 − 3

5 1 0
−4 7 −1 0 0 1

 =

 1 0 0
− 3

5 1 0
0 0 1

 5 −8 1 1 0 0
3 −5 1 0 1 0
−4 7 −1 0 0 1


Step 2: 5 −8 1 1 0 0

0 − 1
5

2
5 − 3

5 1 0
−4 7 −1 0 0 1

 =

 1 0 0
− 3

5 1 0
0 0 1

 5 −8 1 1 0 0
3 −5 1 0 1 0
−4 7 −1 0 0 1


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Step 3: 5 −8 1 1 0 0
0 − 1

5
2
5 − 3

5 1 0
0 3

5 − 1
5

4
5 0 1

 =

 1 0 0
0 1 0
4
5 0 1

 5 −8 1 1 0 0
0 − 1

5
2
5 − 3

5 1 0
−4 7 −1 0 0 1


Step 4: 5 −8 1 1 0 0

0 − 1
5

2
5 − 3

5 1 0
0 0 1 −1 3 1

 =

 1 0 0
0 1 0
0 3 1

 5 −8 1 1 0 0
0 − 1

5
2
5 − 3

5 1 0
0 3

5 − 1
5

4
5 0 1


Step 5: 5 −8 1 1 0 0

0 − 1
5 0 − 1

5 − 1
5 − 2

5
0 0 1 −1 3 1

 =

 1 0 0
0 1 − 2

5
0 0 1

 5 −8 1 1 0 0
0 − 1

5
2
5 − 3

5 1 0
0 0 1 −1 3 1


Step 6: 5 −8 0 2 −3 −1

0 − 1
5 0 − 1

5 − 1
5 − 2

5
0 0 1 −1 3 1

 =

 1 0 −1
0 1 0
0 0 1

 5 −8 1 1 0 0
0 − 1

5 0 − 1
5 − 1

5 − 2
5

0 0 1 −1 3 1


Step 7: 5 −8 0 2 −3 −1

0 1 0 1 1 2
0 0 1 −1 3 1

 =

 1 0 0
0 −5 0
0 0 1

 5 −8 0 2 −3 −1
0 − 1

5 0 − 1
5 − 1

5 − 2
5

0 0 1 −1 3 1


Step 8: 5 0 0 10 5 15

0 1 0 1 1 2
0 0 1 −1 3 1

 =

 1 8 0
0 1 0
0 0 1

 5 −8 0 2 −3 −1
0 1 0 1 1 2
0 0 1 −1 3 1


Step 9: 1 0 0 2 1 3

0 1 0 1 1 2
0 0 1 −1 3 1

 =

 1
5 0 0
0 1 0
0 0 1

 5 0 0 10 5 15
0 1 0 1 1 2
0 0 1 −1 3 1


Ultimately, using the second observation from the previous section we have 1 0 0

0 1 0
0 0 1

 =

 2 1 3
1 1 2
−1 3 1

 5 −8 1
3 −5 1
−4 7 −1


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thus the desired inverse is  2 1 3
1 1 2
−1 3 1


To compute the inverse of a matrix then augment the matrix with the iden-

tity matrix, reduce the resulting system of linearly equations to Reduced Eche-
lon form, the set of solutions (column-wise) is then the inverse of the matrix.

In the above procedure every step is a Gaussian operation. From the previ-
ous section the observations imply that the inverse is the product of Gaussian
operations. For the example above it means that 2 1 3

1 1 2
−1 3 1

 =

 1
5 0 0
0 1 0
0 0 1

 1 8 0
0 1 0
0 0 1

 1 0 0
0 −5 0
0 0 1


 1 0 −1

0 1 0
0 0 1

 1 0 0
0 1 − 2

5
0 0 1

 1 0 0
0 1 0
0 3 1


 1 0 0

0 1 0
4
5 0 1

 1 0 0
− 3

5 1 0
0 0 1


This is an algorithm to compute the inverse of a matrix if one exists. It also

proves the following theorem (subject to a few technical details).

Theorem 6. IfA is an invertible matrix thenA can be written as a product of elemen-
tary matrices.

1.9 Homogeneous and particular solutions

Example: Recall the system with augmented matrix

x1 + 3x2 + 3x3 + 2x4 + x5 = 7

3x1 + 9x2 − 6x3 + 4x4 + 3x5 = −7

2x1 + 6x2 − 4x3 + 2x4 + 2x5 = −4

with augmented matrix  1 3 3 2 1 7
3 9 −6 4 3 −7
2 6 −4 2 2 −4


after Gaussian elimination the Reduced Echelon form is 1 3 0 0 1 3

0 0 1 0 0 2
0 0 0 1 0 −1


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whose solution set can be described in vector form as


3
0
2
−1

0

+


1
0
0
0
−1

 s1 +


0
1
0
0
−3

 s2 | s1, s2 ∈ K


In matrix form the system of linear equations is

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2




x1
x2
x3
x4
x5

 =

 7
−7
−4



Using matrix operations that were defined earlier, substitute the vectors from
the vector form of the solution in the matrix equation A~x = ~b.

For the vector without any parameters

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2




3
0
2
−1

0

 =

 7
−7
−4



For the vector in front of s1

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2




1
0
0
0
−1

 =

 0
0
0



For the vector in front of s2

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2




0
1
0
0
−3

 =

 0
0
0



In the vector representation of the solution if a vector ~h satisfies A~h = ~0,
where in this case ~0 is the vector with all components equal zero then it is
part of the homogeneous solution and if a vector ~p satisfies A~p = ~b then it is
a particular solution. In general the set of solution to A~x = ~b is given by a
particular solution plus the set of homogeneous solutions.
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Here is another homogeneous solution

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2


(2)


1
0
0
0
−1

+ (−3)


0
1
0
0
−3




=

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2




2
−3

0
0
7

 =

 0
0
0



Here is another particular solution

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2





3
0
2
−1

0

+ (2)


1
0
0
0
−1

+ (−3)


0
1
0
0
−3




=

 1 3 3 2 1
3 9 −6 4 3
2 6 −4 2 2




5
−3

2
−1

7

 =

 7
−7
−4



For the set of solutions


3
0
2
−1

0


︸ ︷︷ ︸

particular solution

+


1
0
0
0
−1

 s1 +


0
1
0
0
−3

 s2

︸ ︷︷ ︸
homogeneous solution

| s1, s2 ∈ K


Theorem 7. Any system of linear equations has a description of the solution set in the
form

{~p+ c1~β1 + · · ·+ ck~βk | c1, . . . , ck ∈ K} (1.3)

where ~p is any particular solution and where the number of vectors ~β1, . . . , ~βk equals
the number of free variables that the system has after a Gaussian reduction to Echelon
form.

Argument. The proof of the above theorem relies on the following lemmas.
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Lemma 1. For any homogeneous linear system there exist vectors ~β1, . . . , ~βk such
that the solution set of the system is

{c1~β1 + · · ·+ ck~βk | c1, . . . , ck ∈ K} (1.4)

where k is the number of free variables in an Echelon form version of the system.

Proof. Apply Gauss’s Method to get to Echelon form. Observe that the system
of linear equations has at least one solution (the tuple of all zeroes) and it does
not contain equations of the form 0 = b for a non-zero constant b.

If the system of linear equation has only 0 = 0 type equations then all vari-
ables a free variables and any tuple is a solution thus the lemma holds.

If the system of linear equations has both equations with non-zero coeffi-
cients and some 0 = 0 equations, ignore the 0 = 0 equations since their solution
contains all tuples.

By induction we will verify that each leading variable can be expressed in
terms of free variables. That implies the lemma since the free variables can
be used as parameters and the ~β’s are the vectors of coefficients of those free
variables.

For the base step consider the bottom-most equation

am,`mx`m + am,`m+1x`m+1 + · · ·+ am,nxn = 0 (1.5)

where am,`m 6= 0. (x`m is the leading variable in row m.) At the bottom row
any variables after the leading one are free. For this equation the result hold by
Theorem 1 by setting the non-zero coefficient index to `m.

Assume by induction the statement holds for the bottom-most t rows, with
0 ≤ t < m− 1, the leading variable can be expressed in terms of the free ones.
It remains to verify that it then also holds for the (m− (t+ 1))-th equation.

Take each leading variable in a lower equation x`m , . . . , x`m−t and substitute
its expression in terms of free variables.

Since the system is in Echelon form all such leading variables have larger
index than the leading variable the (m− (t+ 1))-th equation. As a result it has
a leading term of

am−(t+1),`m−(t+1)
x`m−(t+1)

with
am−(t+1),`m−(t+1)

6= 0,

and the rest of the left hand side is a linear combination of free variables.
Rearranging by moving the free variables to the right side and dividing by
am−(t+1),`m−(t+1)

expresses this equation’s leading variable x`m−(t+1)
in terms

of the free variables.
Thus by induction the result follows.

Lemma 2. Let ~p = (p1, . . . , pn) be any particular solution to a system of linear
equations, then the solution set of the system of linear equations is the set:

S = {~p+ ~h | ~h satisfies the corresponing homogeneous system}
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Proof. Let ~s = (s1, . . . , sn) be a solution to the system of linear equations.

Consider ~̃h = ~p − ~s, substitute in the i’th equation in the corresponding
homogeneous system of linear equations to obtain

ai,1(s1 − p1) + · · ·+ ai,n(sn − pn)

= (ai,1s1 + · · ·+ ai,nsn)− (ai,1p1 + · · ·+ ai,npn)

= di − di = 0

Thus ~s = ~p− ~̃h and therefore any solution is in the set S
Conversely, take ~p+~h, where ~h solves the associated homogeneous system.

For an equation i in the system of linear equations the following holds:

ai,1(p1 + h1) + · · ·+ ai,n(pn + hn)

= (ai,1p1 + · · ·+ ai,npn) + (ai,1h1 + · · ·+ ai,nhn)

= di + 0 = di

so any vector ~p+ ~h is a solution to the linear system of equations.

A homogeneous system of linear equations always has at least one solution.
If there are free variables then such a homogeneous system of linear equations
has infinitely many solutions. Thus if a system of linear equations has a solu-
tion it either has a unique solutions or infinitely many solution; it may have no
solutions at all. The following table summarizes the possibilities.

number of solutions of the
homogeneous system

particular
solution

exists?

one infinitely many

yes unique
solution

infinitely many
solutions

no no
solutions

no
solutions

1.9.1 Zero equals zero and number of solutions

The system of linear equations

x1 +3x2 = 5
4x1 +12x2 = k

has Reduced Echelon form

x1 +3x2 = 5
0x1 +0x2 = k − 20

If k = 20 we have infinitely many solutions (what are they). If k 6= 20 we
have no solutions. So does 0 = 0 tell us that we have infinitely many solutions
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always? Consider the following system of linear equation

x1 +3x2 +0x3 +0x4 = 5
4x1 +12x2 +0x3 +0x4 = 20
0x1 +0x2 +x3 +3x4 = 5
0x1 +0x2 +4x3 +12x4 = 21

which has Reduced Echelon form

x1 +3x2 +0x3 +0x4 = 5
0x1 +0x2 +x3 +3x4 = 5
0x1 +0x2 +0x3 +0x4 = 1
0x1 +0x2 +0x3 +0x4 = 0

even though after Gaussian eliminations there is an equation 0 = 0 the sys-
tem of linear equations does not have infinitely many solutions. In fact it is
inconsistent.

The system of linear equations

x1 +x2 +x3 = 0
x2 +x3 = 0

has infinitely many solutions, but no Gaussian operations result in 0 = 0. Thus
the equation 0 = 0 is not necessary for infinitely many solutions.

Remark: In general homogeneous equation have at least one solution. But
other than that just by looking at the system we cannot say if it is consistent
or not. In particular having more variable than equations does not guarantee
infinitely many solutions. In fact it may not even be consistent.
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Chapter 2

Vector spaces

2.1 Definitions and examples

Definition 33 (vector space). A vector space over K is a non-empty set V consist-
ing of vectors along with two operations: vector addition denoted by + and scalar
vector multiplication, such that the sum1 of two vectors is also in V and for any scalar
c ∈ K and any vector ~v ∈ V we have c~v ∈ V. Furthermore, the addition and scalar
multiplication satisfy the following properties:

1. ~u+ ~v = ~v + ~u

2. (~u+ ~v) + ~w = ~u+ (~v + ~w)

3. there is a unique zero vector ~0 ∈ V such that ∀~v ∈ V : ~0 + ~v = ~v.

4. for each vector ~v ∈ V there exist a unique vector ~−v such that ~v + ( ~−v) = ~0.

5. for each vector ~v ∈ V we have 1~v = ~v

6. for each vector ~v ∈ V and for all scalars α and β we have that α(β~v) = (αβ)~v

7. α(~u+ ~v) = α~v + α~u

8. (α+ β)~v = α~v + β~v

Examples:

1. The set of complex numbers C over themselves C with standard addition
and multiplication of complex numbers.

2. The set of real numbers R over themselves R with standard addition and
multiplication of real numbers.

1In general a V ×V→ V binary operation
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3. The set of matricesMn×m(K) of dimension n×m with entries in K with
standard matrix addition and scalar matrix multiplication.

4. The set of column vectors Kn with n components from K with standard
vector addition and scalar vector multiplication.

5. The plane pl : 2X + 3Y − Z = 0 in three dimensions with usual addition
and scalar multiplication, formally

pl =


 X

Y
Z

 | 2X + 3Y − Z = 0


with standard vector operations.

6. Any plane in three dimension that passes through the origin i.e. any
plane pl : AX + BY + CZ = 0 in three dimensions with usual addition
and scalar multiplication, formally

pl =


 X

Y
Z

 | AX +BY + CZ = 0


with standard vector operations, whereA,B andC can be any real values
not simultaneously zero.

7. The set of all functions with domain the interval [a, b] and codomain R
denoted by [a, b]

R with standard functions addition and constant function
multiplication.

8. The set of all continuous functions defined on a interval [a, b] denoted by
C[a, b] with standard functions addition and constant function multipli-
cation.

9. The set of all sequences {an}with standard operations from calculus.

10. The set of all sequences {an} that have only finitely many non-zero terms
with standard operations from calculus.

11. The set of all sequences {an} that converge to zero that is {an} → 0 with
standard operations from calculus.

12. The set of all polynomials P with standard (calculus) operations on poly-
nomials.

13. Polynomials of degree at most n denoted by Pn with standard (calculus)
operations on polynomials.

14. All functions in the set {a cosx + b sinx | a, b ∈ R} with standard (calcu-
lus) operations on functions.

15. A set with single element z with operations αz = z and z + z = z.
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Counterexamples:

1. With standard vector operations the vectors with integer components

Z2 =

{(
x0
x1

)
| x0, x1 ∈ Z

}
.

This set with these operations is not a vector space. Scalar multiplication
for example (

4
1

)
∈ Z2,

but

π

(
4
1

)
=

(
4π
1π

)
6∈ Z2.

so scalar vector multiplication is not a function

� : R × Z2 → Z2,

its codomain is R2 and not Z2 that is

� : R × Z2 → R2,

2. polynomials that evaluate to 1 at 3 - vector addition is not closed: adding
any two polynomials that evaluate to 1 at 3 results in a polynomial that
evaluates to 2 at 3

2.2 A special example

Let CVS =

{[
x
y

]
| x, y ∈ R

}
with the operations

⊕ : CVS×CVS→ CVS

� : R×CVS→ CVS

defined as

~u⊕ ~v =

[
x
y

]
⊕
[
s
t

]
=

[
x+ s− 2
y + t

]

α� ~u = α�
[
x
y

]
=

[
αx− 2α+ 2

αy

]
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Vector addition examples:[
0
1

]
⊕
[

0
2

]
=

[
−2

3

]
[

100
200

]
⊕
[

1
−4

]
=

[
99

196

]
[

0
0

]
⊕
[

0
0

]
=

[
−2

0

]

Scalar multiplication examples:

−1�
[

100
200

]
=

[
−96
−200

]

−1�
[

0
0

]
=

[
4
0

]
2�

[
0
0

]
=

[
−2

0

]
0�

[
0
0

]
=

[
2
0

]

Verification: we verify all conditions for vector spaces:

1. the set is non-empty, for example
[

1
4

]
∈ CVS

2. closure of vector addition: if x, s ∈ R then x + s − 2 ∈ R; if y, t ∈ R then
y + t ∈ R. Therefore from the definition of ⊕ vector addition is closed.

3. closure of scalar multiplication: if α, x ∈ R then αx−2α+2 ∈ R; if α, y ∈ R
then αy ∈ R. Therefore from the definition of � scalar multiplication is
closed.

4. ~u⊕ ~v = ~v ⊕ ~u

~u⊕ ~v =

[
x
y

]
⊕
[
s
t

]
=

[
x+ s− 2
y + t

]
=

[
s+ x− 2
t+ y

]
=

[
s
t

]
⊕
[
x
y

]
= ~v ⊕ ~u
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5. (~u⊕ ~v)⊕ ~w = ~u⊕ (~v ⊕ ~w)

(~u⊕ ~v)⊕ ~w =

([
x
y

]
⊕
[
s
t

])
⊕
[
p
q

]
=

[
x+ s− 2
y + t

]
⊕
[
p
q

]
=

[
(x+ s− 2) + p− 2

(t+ y) + q

]
=

[
x+ (s+ p− 2)− 2

y + (t+ q)

]
=

[
x
y

]
⊕
[
s+ p− 2
y + q

]
=

[
x
y

]
⊕
([

s
t

]
⊕
[
p
q

])
= ~u⊕ (~v ⊕ ~w)

6. there is a unique zero vector ~0 ∈ CVS such that ∀~u ∈ CVS : ~0 ⊕ ~u = ~u.

We want a vector ~0 =

[
A
B

]
such that ~0⊕ ~u = ~u for all choices of ~u, then

~0⊕ ~u =

[
A
B

]
⊕
[
x
y

]
=

[
A+ x− 2
B + y

]
=

[
x
y

]
= ~u

The above implies A+x− 2 = x meaning A = 2 and B+ y = B meaning

B = 0. Indeed by setting ~0 =

[
2
0

]
we obtain

~0⊕ ~u =

[
2
0

]
⊕
[
x
y

]
=

[
2 + x− 2

0 + y

]
=

[
x
y

]
= ~u

7. for each vector ~u ∈ CVS there exist a unique vector ~−u such that ~u +

( ~−u) = ~0. Let ~u =

[
x
y

]
be any vector; solve for ~−u =

[
a
b

]
in[

2
0

]
= ~0 = ~u⊕ ~−u

=

[
x
y

]
⊕
[
a
b

]
=

[
x+ a− 2
y + b

]
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Thus x + a − 2 = 2 meaning that a = −x + 4 and y + b = 0 meaning
that y = −b. Thus the unique vector satisfying the above condition is

~−u =

[
−x+ 4
−y

]
8. 1� ~u = ~u

1� ~u = 1�
[
x
y

]
=

[
1× x− 2× 1 + 2

1× y

]
=

[
x
y

]
= ~u

9. α� (β � ~u) = (αβ)� ~u

α� (β � ~u) = α�
[
βx− 2β + 2

βy

]
=

[
α(βx− 2β + 2)− 2α+ 2

αβy

]
=

[
αβx− 2αβ + 2α− 2α+ 2

αβy

]
=

[
αβx− 2αβ + 2

αβy

]
= (αβ)�

[
x
y

]
= (αβ)� ~u
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10. α� (~u⊕ ~v) = α� ~u⊕ α� ~v

α� (~u⊕ ~v) = α�
([

x
y

]
⊕
[
s
t

])
= α�

[
x+ s− 2
y + t

]
=

[
α(x+ s− 2)− 2α+ 2

α(y + t)

]
=

[
αx+ αs− 2α− 2α+ 2 + 2− 2

αy + αt

]
=

[
(αx− 2α+ 2) + (αs− 2α+ 2)− 2

αy + αt

]
=

[
αx− 2α+ 2

αy

]
⊕
[
αs− 2α+ 2

αt

]
= α�

[
x
y

]
⊕ α�

[
s
t

]
= α� ~v ⊕ α� ~u

11. (α+ β)� ~u = α� ~u⊕ β � ~u

(α+ β)� ~u = (α+ β)�
[
x
y

]
=

[
(α+ β)x− 2(α+ β) + 2

(α+ β)y

]
=

[
(αx− 2α+ 2) + (βx− 2β + 2)− 2

αy + βy

]
=

[
αx− 2α+ 2

αy

]
⊕
[
βx− 2β + 2

βy

]
= α�

[
x
y

]
⊕ β �

[
x
y

]
= α� ~u⊕ β � ~u

All conditions for vector space hold therefore we have a vector space!

Remark: In this vector space ~0 6=
[

0
0

]
, we computed that ~0 =

[
2
0

]
. In

terms of ~u+~0 = ~u we have for example[
3
−4

]
⊕
[

0
0

]
=

[
1
−4

]
6=
[

3
−4

]
instead [

3
−4

]
⊕
[

2
0

]
=

[
3
−4

]

57



as a side observation [
3
−4

]
⊕
[
−1

4

]
=

[
0
0

]
the above is possible in the sense that if ~z denotes the vector with components
that are zero, then for any vector ~u we have that

~u+
(
~−u+ ~z

)
= ~z.

2.3 General results for vector spaces

Theorem 8. ∀~v ∈ V, 0~v = ~0.

Proof. Apply condition 8 above with c1 = c2 = 0 to get

0~v = (0 + 0)~v = 0~v + 0~v

Since 0 + 0 = 0 the right hand side is 0~v. Add to both sides the vector equation
to −0~v which exist by 4 to get

0~v + (−0~v) = 0~v + 0~v + (−0~v)

The right hand side become ~0

~0 = 0~v +~0

By condition 3

~0 = 0~v

Remark: In 0~u = ~0, the representation of the zero vector depends on the
vector space. For the vector space CVS described in §2.2

0�
[

3
−4

]
=

[
2
0

]
6=
[

0
0

]
likewise

0�
[

0
0

]
=

[
2
0

]
6=
[

0
0

]
.

The reason is zero vector representation in that vector space.

Theorem 9. ∀~v ∈ V, (−1)~v = ~−v.
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Proof. Observe that 0 = 1− 1 and apply it to the last equation

~0 = 0~v = 1~v + (−1~v)

By condition 5 we get

~0 = ~v + (−1~v)

Add to both sides ~−v

~−v +~0 = ~−v + ~v + (−1~v)

which by condition 3 for the righthandside and condition 4 for the lefthandside
implies

~−v = ~0 + (−1~v)

Again by condition 3 we have

~−v = −1~v

Remark: In (−1)~u = ~−u, the representation of the additive inverse vector
depends on the vector space and its operations. For the vector space CVS
described in §2.2

−1�
[

3
−4

]
=

[
1
4

]
6=
[
−3

4

]
likewise

−1�
[

0
0

]
=

[
4
0

]
6=
[

0
0

]
.

The fundamental of the above reason is the special definition of vector addition
and scalar multiplication.

Theorem 10. ∀α ∈ K, α~0 = ~0

Proof 1. Let ~u ∈ V and α ∈ K. Then α~u = α~u. On the right hand side we have
α~u = α~u + ~0. On the left hand side using ~u + ~0 = ~u we have α~u = α(~u + ~0) =

α~u+ α~0. Thus
α~u+ α~0 = α~u+~0;

adding −α~u to both sides of the equation

α~u+ α~0− α~u = α~u+~0− α~u ⇒ α~0 +~0 = ~0 +~0

and the desired result follows.

Proof 2. We will use 0~u = ~0 for any vector ~u:

α~0 = α(0~0) = (α0)~0 = 0~0 = ~0
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Remark: as in the previous results α~0 = ~0 refers to the zero vector in that
particular vector space. For the vector space CVS described in §2.2

5�
[

2
0

]
=

[
2
0

]
6=
[

10
0

]
where as

5�
[

0
0

]
=

[
−8

0

]
6=
[

0
0

]

2.4 Linear combinations

In the following we assume all sets of vectors are coming from the same vector
space.

Definition 34. A vector ~w is said to be linear combination of ~u1, ~u2, . . . , ~uk if there
exists constants α1, . . . , αk such that

~w =

k∑
i=1

αi ~ui = α1 ~u1 + · · ·+ αk ~uk

The set of all linear combinations of vectors ~u1, . . . , ~uk is called span of these
vectors. Span is often denoted by 〈~u1, . . . , ~uk〉. Further observations on span
are available in §2.8.

Example: For the vector space R4 with standard operations
1
2
−3
−1

 = 1


1
0
0
0

+ 2


0
1
0
0

− 3


0
0
1
0

− 1


0
0
0
1



implying that ~u =


1
2
−3
−1

 is a linear combination of vectors

~e1 =


1
0
0
0

 , ~e2 =


0
1
0
0

 , ~e3 =


0
0
1
0

 , ~e4 =


0
0
0
1


Every vector ~u in Cn is a linear combination of ~e1, . . . , ~en since the system of
linear equations with augmented matrix

[In | ~u]

always has a solutions (here In is the identity matrix of order n).
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Remark: as in the previous section linear combinations depend on the choice
of vector space and its operations. For example in the standard vector space
C2 the equation (

−2
−2

)
= x1

(
0
0

)
+ x2

(
0
1

)
with corresponding augmented matrix(

0 0 −2
0 1 −2

)

has no solution and therefore the vector ~w =

(
−2
−2

)
is not a linear combina-

tion of the vectors

~u1 =

(
0
0

)
, ~u2 =

(
0
1

)
,

However, for the vector space CVS described in §2.2 the equation[
−2
−2

]
= x1 �

[
0
0

]
⊕ x2 �

[
0
1

]
=

[
−2x1 + 2

0

]
⊕
[
−2x2 + 2

x2

]
=

[
−2x1 − 2x2 + 2

x2

]
with corresponding augmented matrix obtained by equating the vector com-
ponents (

−2 −2 −4
0 1 −2

)
has a solution

(
4
−2

)
which shows that

[
−2
−2

]
= 4�

[
0
0

]
⊕ (−2)�

[
0
1

]

that is the vector
[
−2
−2

]
is a linear combination of the vectors

[
0
0

]
and

[
0
1

]
.

Another example: for the vector space with standard operations C2 we have(
6
−5

)
= 3

(
2
0

)
− 5

(
0
1

)
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so
(

6
−5

)
is a linear combination of

(
2
0

)
and

(
0
1

)
but for the vector

space CVS described in §2.2 the equation[
6
−5

]
= x1 �

[
2
0

]
⊕ x2 �

[
0
1

]
=

[
2
0

]
⊕
[
−2x2 + 2

x2

]
=

[
−2x2 + 2

x2

]
with corresponding augmented matrix obtained by equating the components
of the vectors (

0 −2 4
0 1 −5

)
has no solution and therefore the vector

[
6
−5

]
is not a linear combination of

vectors
[

2
0

]
and

[
0
1

]
.

Theorem 11. If ~w is linear combination of a subset of ~u1, ~vu, . . . , ~uk then it is linear
combination of all the vectors.

Proof. Using Theorem 8 multiply each extra ~ui with the constant zero.

Example consider the set of vectors

~u1 =


0
0
−1

0
−3

 , ~u2 =


0
1
0
0
3

 , ~u3 =


0
0
5
1
3

 , ~u4 =


1
0
0
6
2


we have that 

3
−2

0
18
0

 = −2


0
1
0
0
3

+ 3


1
0
0
6
2


the above linear combination can be extended to all vectors via

3
−2

0
18
0

 = 0


0
0
−1

0
−3

− 2


0
1
0
0
3

+ 0


0
0
5
1
3

+ 3


1
0
0
6
2


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Theorem 12. If ~w is linear combination of ~u1, ~u2, . . . , ~uk and each ~ui is a linear
combination of ~v1, ~v2, . . . , ~vt then ~w is a linear combination of ~v1, ~v2, . . . , ~vt .

Proof. Let

~u1 = u11~v1 + u12~v2 + · · ·+ u1t~vt

~u2 = u21~v1 + u22~v2 + · · ·+ u2t~vt
...

~uk = uk1~vk + uk2~v2 + · · ·+ ukt~vt

then

~w = w1~u1 + w2~u2 + · · ·+ wk~uk

= w1 (u11~v1 + u12~v2 + · · ·+ u1t~vt)︸ ︷︷ ︸
~u1

+w2 (u21~v1 + u22~v2 + · · ·+ u2t~vt)︸ ︷︷ ︸
~u2

+ · · ·+ wk (uk1~v1 + uk2~v2 + · · ·+ ukt~vt)︸ ︷︷ ︸
~uk

= (w1u11 + w2u21 + · · ·+ wkuk1)︸ ︷︷ ︸
w̃1

~v1

+ (w1u12 + w2u22 + · · ·+ wkuk2)︸ ︷︷ ︸
w̃2

~v2

+ · · ·+ (w1u1t + w2u2t + · · ·+ wkukt)︸ ︷︷ ︸
w̃k

~vt

= w̃1~v1 + w̃2~v2 + · · ·+ w̃k~vk

which establishes the result.

Example: consider vectors

~u1 =


1
−2
−12
−4

 , ~u2 =


2
−1
21
4

 , ~u3 =


3
−3
25
4

 , ~u4 =


−5

0
−18
−2

 , ~u5 =


4
−2
18
2


For ~w defined as the linear combination of ~u1, . . . , ~u5 let

~w =


−6
−3
−81
−18

 = 4


1
−2
−12
−4

+1


2
−1
21
4

+0


3
−3
25
4

+0


−5

0
−18
−2

−3


4
−2
18
2

 .
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For the set of vectors

~v1 =


0
0
4
1

 , ~v2 =


0
−1

1
0

 , ~v3 =


1
0
2
0


the following relations hold

~u1 =


1
−2
−12
−4

 = −4


0
0
4
1

+ 2


0
−1

1
0

+ 1


1
0
2
0



~u2 =


2
−1
21
4

 = 4


0
0
4
1

+ 1


0
−1

1
0

+ 2


1
0
2
0



~u3 =


3
−3
25
4

 = 4


0
0
4
1

+ 3


0
−1

1
0

+ 3


1
0
2
0



~u4 =


−5

0
−18
−2

 = −2


0
0
4
1

+ 0


0
−1

1
0

− 5


1
0
2
0



~u5 =


4
−2
18
2

 = 2


0
0
4
1

+ 2


0
−1

1
0

+ 4


1
0
2
0

 .

We then have

~w = (4)~u1 + (1)~u2 + (0)~u3 + (0)~u4 + (−3)~u5

= (4) ((−4)~v1 + (2)~v2 + (1)~v3)

+(1) ((4)~v1 + (1)~v2 + (2)~v3)

+(0) ((4)~v1 + (3)~v2 + (3)~v3)

+(0) ((−2)~v1 + (0)~v2 + (−5)~v3)

+(−3) ((2)~v1 + (2)~v2 + (4)~v3)

= (−18)~v1 + (3)~v2 + (−6)~v3


−6
−3
−81
−18

 = −18


0
0
4
1

+ 3


0
−1

1
0

− 6


1
0
2
0


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Theorem 13. Let A and B be matrices such that C = AB exists, then each column
of C is a linear combination of the columns of A.

Proof. Let

A =


a11 a12 · · · a1k
a21 a22 · · · a2k

. . .
am1 am2 · · · amk

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n

. . .
bk1 bk2 · · · bkn


If

C = AB =


c11 c12 · · · c1n
c21 c22 · · · c2n

. . .
cm1 cm2 · · · cmn



then for column s of matrix C, namely


c1s
c2s

...
cms

we have that

c1s = a11b1s + a12b2s + · · ·+ a1kbks

c2s = a21b1s + a22b2s + · · ·+ a2kbks
...

cms = am1b1s + am2b2s + · · ·+ amkbks

Writing the above equation all at once:
c1s
c2s

...
cms

 = b1s


a11
a21

...
am1

+ b2s


a12
a22

...
am2

+ · · ·+ bks


a1k
a2k

...
amk


Thus the sth column of matrix C is a linear combination of the columns of A
and the coefficients are the entries in row s of matrix B.

Example: given the equation
4 3 4

12 12 18
0 −3 −6
−8 −2 0

 =


0 1
3 3
−3 0

4 −2

( 0 1 2
4 3 4

)

for the third column of the result we have
4

18
−6

0

 = 2


0
3
−3

4

+ 4


1
3
0
−2


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Theorem 14. Let A and B be matrices such that C = AB exists, then each row of C
is a linear combination of the rows of B.

Proof. Let

A =


a11 a12 · · · a1k
a21 a22 · · · a2k

. . .
am1 am2 · · · amk

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n

. . .
bk1 bk2 · · · bkn


If

C = AB =


c11 c12 · · · c1n
c21 c22 · · · c2n

. . .
cm1 cm2 · · · cmn


then for row r of matrix C, namely

(
cr1 cr2 · · · crn

)
we have that

cr1 = ar1b11 + ar2b21 + · · ·+ arkbk1

cr2 = ar1b12 + ar2b22 + · · ·+ arkbk2
...

crn = ar1b1n + ar2b2n + · · ·+ arkbkn

Writing the above equation all at once:

(
cr1 cr2 · · · crn

)
=

ar1b11 + ar2b21 + · · ·+ arkbk1︸ ︷︷ ︸
cr1

ar1b12 + ar2b22 + · · ·+ arkbk2︸ ︷︷ ︸
cr2

· · ·

ar1b1n + ar2b2n + · · ·+ arkbkn︸ ︷︷ ︸
crn


= ar1

(
b11 b12 · · · b1n

)
+ar2

(
b21 b22 · · · b2n

)
+ · · ·+ ark

(
bk1 bk2 · · · bkn

)
Thus the rth row of matrix C is a linear combination of the rows of B and the
coefficients are the entries in row r of matrix A.

Example: given the equation
−3 3 11
−14 −2 14

16 4 −12
−8 −5 −1

 =


2 3
4 −2
−4 4

1 −5

( −3 0 4
1 1 1

)
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for the second row of the result we have

(−14, −2, 14) = 4 (−3, 0, 4)− 2 (1, 1, 1)

2.5 Linear dependence and independence

In §2.4 the underlying question was given a system of linear equation, does
it have a solution. The answer depends on the actual values and if affirma-
tive it implies the system has at least one particular solution. With every sys-
tem of linear equation a related question is does it have a unique solution or
does it have infinitely many solutions. The answer to infinitely many versus
unique solutions is given by the number of solution to the corresponding ho-
mogeneous system of linear equation. This section discusses that question in
relation to vector spaces.

Definition 35. [linear (in)dependence] Let ~v1, ~v2, . . . , ~vk be a set of vectors. If

a1 ~v1 + a2 ~v2 + · · ·+ ak ~vk = ~0 ⇒ a1 = a2 = · · · = ak = 0

then the vectors ~v1, ~v2, . . . , ~vk are called linearly independent otherwise the are lin-
early dependent.

Example: In R2 the vectors
(

1
0

)
and

(
0
1

)
are linearly independent, in-

deed the system of linear equations with augmented matrix(
1 0 0
0 1 0

)
has a unique solution x1 = 0 and x2 = 0.

Example: In R3 the vectors

 1
0
1

,

 0
−2

3

 and

 2
2
−1

 are linearly de-

pendent since the system of linear equation 1 0 2 0
0 −2 2 0
1 3 −1 0


has a non-trivial solution x1 = −2, x2 = 1 and x3 = 1.

Example: Consider the vector space CVS described in §2.2 the vectors

~u1 =

[
4
2

]
and ~u2 =

[
2
1

]
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are linearly independent, since the vector equation ~0 = x1~u1 + x1~u2 gives[
2
0

]
= x1 �

[
4
2

]
⊕ x2 �

[
2
1

]
=

[
2x1 + 2

2x1 + x2

]
and the system of linear equations(

2 0 0
2 1 0

)
has a unique solution x1 = 0 and x2 = 0. However vectors

~u1 =

[
2
0

]
and ~u2 =

[
0
1

]
are linearly dependent since from[

2
0

]
= x1 �

[
2
0

]
⊕ x2 �

[
0
1

]
=

[
−2x2 + 2

x2

]
one obtains the system of linear equations(

0 −2 0
0 1 0

)
which has a non-trivial solution (one such solution is x1 = 5 and x2 = 0).

Example: In C[a, b] – the vector space of continuous on a interval [a, b] func-
tions vectors are continuous functions. Let

~f1 = f1(x) = cos 2x

~f2 = f2(x) = sin2x

~f3 = f3(x) = cos2x

~f4 = f4(x) = ex

~f5 = f5(x) = −3

The zero vector ~0 is the function z(x) = 0, that is the constant function zero.

1. ~f1 = f1(x) and ~f2 = f2(x) are linearly independent, indeed consider the
equation

~0 = α~f1 + β ~f2
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in function form
z(x) = αf1(x) + βf2(x)

In the function form the equation must hold for any x ∈ R. That is, you
first find α and β, and for those α and β the equation must hold for any
x ∈ R. If that is the case consider what happens at x = 0

z (0) = αf1 (0) + βf2 (0) ⇒ 0 = α cos(2× 0) + βsin20

Since cos(0) = 1 and sin(0) = 0 the equation implies

0 = α+ β0.

Apply the same for x = π
4

z
(π

4

)
= αf2

(π
4

)
+ βf3

(π
4

)
⇒ 0 = α cos

(
2× π

4

)
+ βsin2

(π
4

)
Since cos

(π
2

)
= 0 and sin2

(π
4

)
=

1

2
the equation implies

0 = α0 +
β

2
.

The set of equations

0 = α0 +
β

2
0 = α+ β0

has unique solutions α = 0 and β = 0.

2. The vectors ~f2 = f2(x), ~f3 = f3(x) and ~f5 = f5(x) are linearly dependent.
Consider

α~f2 + β ~f3 + γ ~f5 = ~0

since the vector equation

6~f2 + 6~f3 + 2~f5 = ~0

equivalently in function form

6 sin2(x)︸ ︷︷ ︸
~f2

+6 cos2(x)︸ ︷︷ ︸
~f3

+2( −3︸︷︷︸
~f5

) = z(x)

is satisfied for any value x ∈ R.

3. The vectors ~f1 = f1(x), ~f3 = f3(x) and ~f4 = f4(x) are linearly indepen-
dent, the equation

~0 = α~f1 + β ~f3 + γ ~f4
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in function form

z(x) = αf1(x) + βf3(x) + γf4(x)

evaluated at x = 0 implies

z (0) = αf1 (0) + βf3 (0) + γf4 (0)

⇒ 0 = α cos (2× 0) + βcos2 (0) + γe0

⇒ 0 = α+ β + γ

The same equation evaluated at x = π implies

z (π) = αf1 (π) + βf3 (π) + γf4 (π)

⇒ 0 = α cos (2π) + βcos2 (π) + γeπ

⇒ 0 = α+ β + γeπ

The same equation evaluated at =
π

2
implies

z
(π

2

)
= αf1

(π
2

)
+ βf3

(π
2

)
+ γf4

(π
2

)
⇒ 0 = α cos

(
2
π

2

)
+ βcos2

(π
2

)
+ γe

π
2

⇒ 0 = −α+ γe
π
2

The set of equations

0 = α+ β + γ

0 = α+ β + γeπ

0 = −α+ γe
π
2

has only one solution, namely α = 0, β = 0 and γ = 0.

Theorem 15. The standard basis vectors are linearly independent, in other words the
columns and rows of I are linearly independent.

Proof. Let ~ei be the vector whose ith coordinate is one and the rest zero. Con-

sider the system of linear equation whose vector form is
n∑
i=1

~eixi = ~0 or


1
0
...
0
0


︸ ︷︷ ︸

~e1

x1 +


0
1
...
0
0


︸ ︷︷ ︸

~e2

x2 + · · ·+


0
0
...
1
0


︸ ︷︷ ︸
~en−1

xn−1 +


0
0
...
0
1


︸ ︷︷ ︸

~en

xn =


0
0
...
0
0

 .
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This system is in row-reduced Echelon form and has a unique solution
x1
x2
...
xn−1
xn

 =


0
0
...
0
0

 .

Thus the standard basis vectors are linearly independent.

Theorem 16. Let ~v1, ~v2, . . . , ~vk be collection of vectors. If k = 1 the system of vectors
is linear dependent if and only if ~v1 = ~0.

Proof. If ~v = ~0 then 1~v = 1~0 = ~0 and therefore it is linearly dependent.
Assume ~v is linearly dependent then α~v = ~0 for some non-zero constant α.

Multiplying both sides by α−1 we obtain ~v = α−1~0. Or

~v = α−1~0 = α−1(0~0) = α−1(0~0) = (α−10)~0 = (0)~0 = 0~0 = ~0

Theorem 17. Let ~v1, ~v2, . . . , ~vk be collection of vectors. If for some 1 ≤ i ≤ k we
have that ~vi = ~0 then the system of vectors is linear dependent.

Proof. Self study excerise

Theorem 18. Let ~v1, ~v2, . . . , ~vk be collection of vectors. If for some 1 ≤ i 6= j ≤ k we
have that ~vi = ~vj then the system of vectors is linear dependent.

Proof. Self study excerise

Theorem 19. Let ~v1, ~v2, . . . , ~vk be collection of linearly dependent vectors and k > 1.
Then there is an index i such that ~vi can be written as a linear combination of the
remaining vectors.

Proof. Self study excerise

2.6 Main theorem

The next result has various applications in determining if a set of vectors is
linearly dependent as well as its size. Before stating it the following note is
worth mentioning
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Remark on terminology. Given two sets of vectors A and B such that ev-
ery vector of A is a linear combination of the vectors in B, for example as in
Theorem 12, consider the statement

A is a linear combination of vectors in B

and the statement

A is a linearly dependent set.

The former statement refers to Definition 34, the latter statement refers to Def-
inition 35. To that end the statement

A is dependent

(bar any grammar issues) tends to be confusing. Does it mean A depends on
how the vectors in B are given – that is if you change the vectors in B, the
vectors in A also change? Or does it mean A is linearly dependent set? To
my knowledge text on linear algebra would mean that A is linearly depen-
dent in the sense of Definition 35. However, as far as students (or those who
learn linear algebra) are concerned the statement meaning differs for different
individuals. Please do not make such statements. Be verbose: use one of the
previous two statements!

Theorem 20. Let A = { ~a1, ~a2, . . . , ~as} and B =
{
~b1, ~b2, . . . , ~bk

}
be two non-empty

sets of vectors. Suppose that for each 1 ≤ i ≤ s we have that ~ai is a linear combination
of
{
~b1, ~b2, . . . , ~bk

}
that is

~a1 = γ11 ~b1 + γ12 ~b2 + · · ·+ γ1k~bk

~a2 = γ21 ~b1 + γ22 ~b2 + · · ·+ γ2k~bk
...

~as = γs1~b1 + γs2~b2 + · · ·+ γsk~bk.

Suppose also s > k then the vectors in A are a linearly dependent set of vectors.

Proof. The argument proceeds by induction on k.

Base case k = 1: : Since k = 1 then B = {~b1}. Then

~a1 = γ11 ~b1

~a2 = γ21 ~b1
...

~as = γs1~b1.

72



If for any index i, γi1 = 0 then A contains the zero vector and therefore A is
linearly dependent. Suppose now for all indices i, γi1 6= 0 then since s > k = 1,
there are at least two vectors ~a1 and ~a2 in A. Consider

γ21 ~a1 − γ11 ~a2 = γ21γ11 ~b1 − γ11γ21 ~b1 = 0~b1 = ~0

Then ~a1 and ~a2 are linearly dependent. And since they are subset of A, then A
itself is linearly dependent. This concludes the base case.

Inductive step: Let k ≥ 2. By the theorem statement we have

~a1 = γ11 ~b1 + γ12 ~b2 + · · ·+ γ1k~bk

~a2 = γ21 ~b1 + γ22 ~b2 + · · ·+ γ2k~bk
...

~as−1 = γ(s−1)1 ~b1 + γ(s−1)2 ~b2 + · · ·+ γ(s−1)k~bk.

~as = γs1~b1 + γs2~b2 + · · ·+ γsk~bk.

If all γs1, γs2, . . . , γsk are zero then ~as = ~0 and thereforeA is linearly dependent.
Suppose now at least one of γs1, γs2, . . . , γsk is non-zero. Without loss of gener-
ality let γsk 6= 0. In this case we add −γs1γsk

the last equation to the first equation.
Similarly, we add −γs2

γsk
the last equation to the second equation and so forth

until we add −γ(s−1)k

γsk
the last equation to equation s− 1 to obtain equations

~a′1 = ~a1 −
γ1k
γsk

~as = γ′11
~b1 + γ′12

~b2 + · · ·+ γ′1(k−1)
~b(k−1)

~a′2 = ~a2 −
γ2k
γsk

~as = γ′21
~b1 + γ′22

~b2 + · · ·+ γ′2(k−1)
~b(k−1)

...
~a′s−1 = ~as−1 −

γ(s−1)k

γsk
~as = γ′(s−1)1

~b1 + γ′(s−1)2
~b2 + · · ·+ γ′(s−1)(k−1)

~bk−1.

Since s > k, then s − 1 > k − 1. Furthermore, each ~a′1, . . . ,
~a′s−1 is a linear

combination of the vectors ~b′1, . . . , ~b′k−1. We apply the inductive hypothesis to
conclude that ~a′1, . . . , ~a′s−1 are linearly dependent. In other words there exists
µ1, µ2, . . . , µs−1 not all zero such that

~0 = µ1
~a′1 + µ2

~a′2 + · · ·+ µs−1 ~a′s−1

= µ1

(
~a1 −

γ1k
γsk

~as

)
+ µ2

(
~a2 −

γ2k
γsk

~as

)
+ µs−1

(
~as−1 −

γ(s−1)k

γsk
~as

)
= µ1 ~a1 + µ2 ~a2 + · · ·+ µs−1 ~as−1 + τ ~as.

Since at least one of µi’s is non-zero, the vectors ~a1, ~a2, . . . , ~as are linearly de-
pendent.
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Example: In the standard vector space R4 if a set A contains five or more

vectors ~ai =


ai1
ai2
ai3
ai4

 each one is a linear combination of the standard basis

vectors

~e1 =


1
0
0
0

 ~e2 =


0
1
0
0

 ~e3 =


0
0
1
0

 ~e4 =


0
0
0
1

 ,

namely,

~ai = ai1~e1 + ai2~e2 + ai3~e3 + ai4~e4.

Then the vectors in A are linearly dependent. This can be generalized to say
that in Rn any set of n + 1 vectors is linearly dependent. Observe that if we
have n or less vectors in Rn they may or may not be linearly independent.
Theorem 20 implies nothing if the size of A is smaller than or equal to the size
of B.

Example: Let A = {~a1,~a2,~a3,~a4} and B =
{
~b1,~b2,~b3

}
where

~a1 =


3
−3

4
7

 ~a2 =


6
0
4

10

 ~a3 =


3
0
2
5

 ~a4 =


4
7
0
2


and

~b1 =


2
−1

2
4

 ~b2 =


1
1
0
1

 ~b3 =


−2
−5

0
0


We have that

~a1 = 2~b1 −~b2
~a2 = 2~b1 + 2~b2

~a3 = ~b1 +~b2

~a4 = 2~b2 −~b3

then vectors in A are linearly dependent.

Remark: in the first example above the set B is linearly independent (the
vectors ~ei are linearly independent). In the second example the set of vectors
in B are linearly dependent. This shows that Theorem 20 says nothing about
the linear dependence or independence of the set B.

The next result show a non-trivial application of Theorem 20.
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Theorem 21. An n × n matrix A has linearly dependent rows if and only if it has
linearly dependent columns.

Proof. Let A = (~c1, . . . ,~cn) =

 ~r1
...
~rn

. If the rows of A are linearly dependent

then we know that the equation

α1~r1 + · · ·+ αn~rn = ~0

has a solution where at least one αi 6= 0. Then we can write

~ri =
α1

αi
~r1 + · · ·+ αi−1

αi
~ri−1 +

α1

αi+1
~ri+1 + · · ·+ αn

αi
~rn

Thus each vector in the set {~r1, . . . , ~rn} is a linear combination of the vectors in
{~r1, . . . , ~ri−1, ~ri+1, . . . , ~rn}. Therefore using properties of matrix multiplication
we can write

A =

 ~r1
...
~rn

 = BC

WhereB is an n×n−1 matrix andC is a n−1×nmatrix. Furthermore the rows
of C are equal to {~r1, . . . , ~ri−1, ~ri+1, . . . , ~rn}. In this case, however, the columns
of A are linear combinations of the columns of B. There are n − 1 columns in
B and n columns in A. Thus by the above Theorem 20 the columns of A are
linearly dependent. Similar argument applies if the columns of A are linearly
dependent.

2.7 Subspaces

Definition 36 (subspace). Let V be a vector space and let U be a subset of V. If U
is a vector space itself then U is called a subspace of V

Examples: the following are example of subspaces.

1. Every vector space is a subspace of itself.

2. The x-axis defined as {(
x
0

)
| x ∈ R

}
is subspace of R2

3. The y-axis defined as {(
0
y

)
| y ∈ R

}
is subspace of R2
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4. The set {(
0
0

)}
is a subspace of R2.

5. Pn polynomials of degree at most n are a subspace of the set of all poly-
nomials P.

6. For the vector space CVS described in §2.2 the vectors the following set
is a subspace {[

2
y

]
| y ∈ R

}
7. For the vector space CVS described in §2.2 the vectors the following set

is a subspace {[
x
0

]
| x ∈ R

}
8. For the vector space CVS described in §2.2 the vectors the following set

is a subspace {[
2
0

]}
The set consists just of the zero vector in CVS.

Counterexamples: the following are not subspaces (even though they are
subsets of the corresponding vector spaces).

1. line through points (1, 0) and (0, 1){(
x
y

)
| x+ y = 1

}
is not a subspace of R2. It does not contain the zero vector for example;
the vector operations are also not closed.

2. The set consisting of the single element{[
2
0

]}
is not a subspace of R2.

3. Even degree polynomials Pe are not a subspace of polynomials P: for
example

p1(x) = x2 + x+ 1 ∈ Pe

p2(x) = −x2 − 1 ∈ Pe
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but
p1(x) + p2(x) = x 6∈ Pe

thus polynomial addition is not closed for even degree polynomials.

4. Odd degree polynomials Po are not a subspace of polynomials P: for
example

q1(x) = x3 + x2 + 1 ∈ Po

q2(x) = −x3 − 1 ∈ Po

but
q1(x) + q2(x) = x2 6∈ Po

thus polynomial addition is not closed for odd degree polynomials.

5. For the vector space CVS described in §2.2 the set{[
0
0

]}
is not a subspace of CVS.

Theorem 22. In any vector space V the vector space itself is a subspace and the zero
vector on its own is a vector space.

Proof. Verification of all vector space properties is straightforward.

The vector space itself and the zero vector are often called the trivial sub-
spaces. The next result establishes an efficient way to test of a subset of a vec-
tors space is also as subspace.

Theorem 23. A set U is a subspace of V if and only if for all ~u, ~w ∈ U and for all
s, t ∈ K we have that s~u+ t~w ∈ U.

Proof. If U is a subspace of a vector space V, then it is a vector space itself and
since the operations are closed we have that s~u+ t~w ∈ U.

Suppose now ∀~u, ~w ∈ U,∀s, t ∈ K, s~u+t~v ∈ U. We will verify all properties
of vector spaces for U.

closure of + from ∀~u, ~w ∈ U,∀s, t ∈ K, s~u+ t~w ∈ U for s = t = 1 we conclude
∀~u, ~w ∈ U, ~u+ ~w = 1~u+ 1~w ∈ U

closure of · from ∀~u, ~w ∈ U,∀s, t ∈ K, s~u + t~w ∈ U for t = 0 and ~u = ~w we
conclude ∀~u ∈ U,∀s ∈ K, s~u = s~u+ 0~w ∈ U

commutativity since the operations are inherited from V the result follows

associativity since the operations are inherited from V the result follows

zero vector from ∀~u, ~w ∈ U,∀s, t ∈ K, s~u + t~w ∈ U for s = t = 0 ~0 = ~0 + ~0 =
0~u+ 0~w ∈ U; uniqueness and neutrality is inherited from V;

77



neutral inverse from ∀~u, ~w ∈ U,∀s, t ∈ K, s~u + t~w ∈ U for ~u = ~w, s = 0 and
t = −1 we have ∀~u ∈ U, ~−u = ~0 + ~−u = 0~u+ (−1)~u ∈ U;

distributive properties are inherited from V.

Example: consider

S =


 X

Y
Z

 | 3X + 6Y = 2Z

 ⊂ R3.

One way to verify the above subset is also a subspace is to check all conditions
of Definition 33 as done in §2.2. The alternative is to use Theorem 23. Let

~u =

 xu
yu
zu

 ∈ S

~w =

 xw
yw
zw

 ∈ S

By definition we have

3xu + 6yu = 2zu

3xw + 6yw = 2zw.

Multiply the first equation with s and the second equation with t and add them
together to obtain

3(sxu + txw) + 6(sxu + tyw) = 2(szu + tzw)

which means

s~u+ t~w = s

 xu
yu
zu

+ t

 xw
yw
zw


=

 3(sxu + txw)
6(sxu + tyw)
2(szu + tzw)

 ∈ S

By Theorem 23 the set S is a subspace of R3.

Example: consider

T =


 X

Y
Z

 | 3X + Y = Z + 1

 ⊂ R3.
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Let

~u =

 2
0
5

 ∈ T

~w =

 0
2
1

 ∈ T

with s = 1 and t = 1 we get

s~u+ t~w = 1

 2
0
5

+ 1

 0
2
1


=

 2
2
6

 6∈ T

By Theorem 26 the set T is not a subspace of R3.

2.8 Span

Definition 37 (span). Let S = {~u1, . . . , ~um} be a set of vector the set of all linear
combinations of the vectors in S is called the span of S and denoted by 〈S〉

〈S〉 = {a1~u1 + · · ·+ am~um | a1 . . . am ∈ K}

If S = ∅ then 〈S〉 = {~0}

Examples:

1. For the vector space R2 we have

R2 =

〈(
1
0

)
,

(
0
1

)〉
=

〈(
2
1

)
,

(
0
−1

)
,

(
2
−1

)〉

x-axis =

〈(
1
0

)〉
=

〈(
1
0

)
,

(
0
0

)〉
=

〈(
2
0

)
,

(
0
0

)〉
=

〈(
0
0

)
,

(
1
0

)〉

y-axis =

〈(
0
1

)〉
=

〈(
0
1

)
,

(
0
−1

)〉
{(

0
0

)}
=

〈(
0
0

)〉
= 〈∅〉
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If l is the line x+ y = 0 in R2 that is the set

l =

{(
x
y

)
| x+ y = 0

}
then

l =

〈(
1
−1

)〉
2.
〈
1, x, x2

〉
= P2 that is the span of x0, x and x2 is the set of all polynomials

of degree at most two.

3. 〈P2〉 = P2 that is the span of all polynomials of degree at most two is the
set of all polynomials of degree at most two.

4.
〈
1, x, x2, . . . , xn

〉
= Pn that is the span of x0, x, . . . , xn is the set of all

polynomials of degree at most n.

5.
〈
x0, x1, x2, . . . , xn . . .

〉
= P that is the span of powers of x is the set of all

polynomials.

6. 〈P〉 = P that is the span of polynomials is the set of all polynomials.

7. For any vector space V we have

〈V〉 = V

8. For the vector space CVS described in §2.2 we have

CVS =

〈(
0
0

)
,

(
0
1

)〉
=

〈(
0
0

)
,

(
0
1

)
,

(
2
0

)〉
{[

2
y

]
| y ∈ R

}
=

〈(
2
3

)〉
=

〈(
2
4

)
,

(
2
1

)〉
{[

x
0

]
| x ∈ R

}
=

〈(
0
0

)〉
=

〈(
0
0

)
,

(
2
0

)〉
{(

2
0

)}
=

〈(
2
0

)〉
= 〈∅〉

9. Let ~st denote the sequence {sti}where

sti =

{
1 t = i
0 t 6= i

that is

~s1 = 1, 0, 0, 0, . . .

~s2 = 0, 1, 0, 0, . . .

~s3 = 0, 0, 1, 0, . . .

...
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Then the set of sequences with finitely may non-zero terms equals

〈~s1, ~s2, . . . 〉

Example: consider the system of linear equations

x1 + 2x2 + x3 + 4x4 + 2x5 = 5

2x1 + 4x2 + 3x3 + 8x4 + 3x5 = 9

x1 + 2x2 + 2x3 + 5x4 + x5 = 5

x1 + 2x2 + x3 + 2x5 = 1

equivalently in vector form
1
2
1
1

x1 +


2
4
2
2

x2 +


1
3
2
1

x3 +


4
8
5
0

x4 +


2
3
1
2

x5 =


5
9
5
1


has solution (verify it)

x1 = 3 + 3s1 + 2s2
x2 = 1 + s2
x3 = −2− s1
x4 = 1
x5 = −1 + s1

in vector form


3
1
−2

1
−1

+


3
0
−1

0
−1

 s1 +


2
−1

0
0
0

 s2 | s1, s2 ∈ R

 .

The particular solution implies

3


1
2
1
1

+


2
4
2
2

− 2


1
3
2
1

+


4
8
5
0

−


2
3
1
2

 =


5
9
5
1


equivalently

5
9
5
1

 ∈
〈

1
2
1
1

 ,


2
4
2
2

 ,


1
3
2
1

 ,


4
8
5
0

 ,


2
3
1
2


〉
.
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Conversely, if
4
9
5
4

 ∈
〈

1
2
1
1

 ,


2
4
2
2

 ,


1
3
2
1

 ,


4
8
5
0

 ,


2
3
1
2


〉

then the system of linear equations in vector form
1
2
1
1

x1 +


2
4
2
2

x2 +


1
3
2
1

x3 +


4
8
5
0

x4 +


2
3
1
2

x5 =


4
9
5
4


has a solution. This is an example of the following result

Theorem 24. A system Ax = b has a solution if and only if b is in the span of the
columns of A.

Proof. Consider A~x = ~b as matrix multiplication by Theorem 13 the columns
of the result are a linear combination of the columns of A. Thus if A~x = ~b
has a solution then ~b is a linear combination of the columns of A equivalently
~b is in the span of the columns of matrix A. Conversely, if ~b is in the span of
the columns of matrix A then there is (column) vector ~c such that A~c = ~b and
therefore A~x = ~b has a solution.

Example: continuing the above example using the homogeneous solutions
we have 

2
4
2
2

 = −2


1
2
1
1




2
3
1
2

 = 3


1
2
1
1

−


1
3
2
1


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For the set 〈A〉which is the span of columns of matrix A by Theorem 12 we get

〈A〉 =

〈
1
2
1
1

 ,


2
4
2
2

 ,


1
3
2
1

 ,


4
8
5
0

 ,


2
3
1
2


〉

=

〈
1
2
1
1

 ,


1
3
2
1

 ,


4
8
5
0

 ,


2
3
1
2


〉

=

〈
1
2
1
1

 ,


1
3
2
1

 ,


4
8
5
0


〉

Theorem 25. 〈S〉 = 〈S ∪ ~u〉 if and only if ~u ∈ 〈S〉.

Proof. Assume first ~u ∈ 〈S〉. The inclusion 〈S〉 ⊆ 〈S ∪ ~u〉 holds since S ⊆ S ∪ ~u.
For 〈S〉 ⊇ 〈S ∪ ~u〉 since ~u ∈ 〈S〉 then ~u is a linear combination of the vectors in
S and by Theorem 12 any vector that is linear combination of S ∪ ~u is a linear
combination of the vectors in S meaning that 〈S〉 ⊇ 〈S ∪ ~u〉.

Assume now 〈S ∪ ~u〉 = 〈S〉 since ~u ∈ S ∪ ~u then ~u ∈ 〈S ∪ ~u〉 = 〈S〉.
Thus the result follows.

Theorem 26. The span of a set of vectors is a vector space.

Proof. Let ~u, ~w ∈ 〈S〉, then by properties of vector spaces s~u + t~w ∈ 〈S〉. By
Theorem 23 the result follows.

2.9 Basis and Dimension

Definition 38 (basis). Let V be a vector space, the set of vectors B = {~b1, . . . ,~bd}
is a basis for V if every vector in V can be represented as a linear combination of the
vectors in B and the vectors in B are linearly independent.

We can express elements of a vector space using basis elements. If B is a
basis for V then B ⊆ V.

Standard basis: For the vector space R3 the set E = {~e1, ~e2, ~e3}where

~e1 =

 1
0
0

 , ~e2 =

 0
1
0

 , ~e3 =

 0
0
1


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is a basis since for any vector ~u ∈ R3 we have ~u ∈ 〈E〉. This basis is known as
the standard basis and can be generalized to any Rn. An alternative basis for
R3 is B =

{
~b1,~b2,~b3

}
where

~b1 =

 1
−1

0

 ,~b2 =

 0
1
−1

 ,~b3 =

 0
0
1

 .

Using span notation we have

R3 = 〈~e1, ~e2, ~e3〉 =
〈
~b1,~b2,~b3

〉
Example: for the subspace S of the vector space R3 defined in §2.7 we have

S = 〈B〉 =

〈 2
−1

0

 ,

 0
1
3

〉

〈D〉 =

〈 4
−5
−9

 ,

 2
−3
−6

〉

Example: for the vector space P2 we have bases B and D where

P2 = 〈B〉 =
〈
6x2 − 39x+ 23, −5x2 + 33x− 19, −x2 + 7x− 4

〉
〈D〉 =

〈
x2 − 8x+ 5, x2 − 5x+ 3, −x2 + 7x− 4

〉
Example: consider the vector space CVS described in §2.2. It has bases B
and D where

CVS = 〈B〉 =

〈[
3
0

]
,

[
2
1

]〉

〈D〉 =

〈[
0
1

]
,

[
3
−1

]〉

Remark: in all examples above the number of basis vector for the same vec-
tors space remains the same. This is not a coincidence.

Theorem 27. Let B1 and B2 be two distinct basis for a vector space V. Then the
number of vectors in B1 and B2 is the same.

Proof. Suppose by contradiction the size (number of vectors in the set) of B1

does not equal the size of B2. Without loss of generality suppose the size B2 is
strictly larger than the size of B1. By definition of basis every vector in B2 is a
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linear combination of the vectors in B1. Then by Theorem 20 the vectors in B2

must be linearly dependent contradicting the fact that B2 is a basis. Thus all
basis have the same number of vectors.

Definition 39 (dimension). Let B be a basis for a vector space V, then the size of B
is called the dimension of V.

Definition 40 (finite dimensional vector space). A vector space is called finite
dimensional if it has a basis with only finitely many vectors.

Remark many of the result that are discussed here are valid for infinite di-
mensional vector space, however, the arguments presented here are valid for
finite dimensional vector space. Infinite dimensional vector spaces are a topic
of a different course. Using the notation/examples from §2.1

Examples:

1. Kn is finite dimensional vector space;

2. Mn×m(K) is finite dimensional vector space;

3. C[a, b] is infinite dimensional vector space;

4. P is infinite dimensional vector space;

5. Pn is finite dimensional vector space;

6. the vector space from §2.2 is finite dimensional vector space.

Theorem 28. Any linearly independent set can be extended to a basis.

Proof. Self study exercise.

Theorem 29. Any spanning set contains a basis.

Proof. Self study exercise.

2.10 Coordinates

In § 2.4 the underlying question is whether a system of linear equations has a
solution. Span is the set of all linear combination so §2.8 reiterates the same
problem. Linear independence as in §2.5 is concerned with uniqueness of so-
lution to a homogeneous system of linear equations. For a given consistent
system of linear equations if the corresponding homogeneous system of linear
equations has a unique solution then the original system of linear equations
has a unique solution. Coordinates, similar to linear independence, discuss the
idea of non-homogeneous system of linear equations having a unique solution.
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Theorem 30. Let ~e1, . . . , ~en be linearly independent. Suppose ~u = a1 ~e1 + · · ·+an ~en
and ~u = b1 ~e1 + · · ·+ bn ~en. Then a1 = b1, a2 = b2,. . . , an = bn.

Proof. Suppose

~u = a1 ~e1 + · · ·+ an ~en

~u = b1 ~e1 + · · ·+ bn ~en.

Subtracting them gives

~0 = (a1 − b1)~e1 + · · ·+ (an − bn) ~en.

Since ~e1, . . . , ~en are linearly independent the only solution is

0 = a1 − b1
...

0 = an − bn

which implies the result.

Definition 41 (coordinates). Let ~u be a vector in a d-dimensional vector space V.
Let B = {~b1, . . . ,~bd} be a basis for V. By definition of basis

~u = u1~b1 + · · ·+ ud~bd.

The values u1, . . . , ud are the coordinates of ~u with respect to basis B.

Representation map. Let U be a vector space of dimension d with a basis
B = {~b1, . . . ,~bd}. The map

RB : U→ Kd

called representation map is defined as

RB (~u) =


u1
u2
...
ud


B

where u1, u2, . . . , ud are the coordinates of ~u in basis B. The vector

 u1
...
ud


B

is

the representation of vector ~u in basis B. Whenever the basis B is understood
from the context, the subscript is often omitted. It is straightforward to verify
that for a basis B if

RB (~u) =


u1
u2
...
ud


B
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and

RB (~w) =


w1

w2

...
wd


B

then

RB (s~u+ t~w) = sRB (~u) +RB (t~w) =


su1 + tw1

su2 + tw2

...
su3 + twd


B

Example: consider the vectors space R3. For vector ~u where

~u =

 1
0
2


and the standard basis E = {~e1, ~e2, ~e3}where

~e1 =

 1
0
0

 , ~e2 =

 0
1
0

 , ~e3 =

 0
0
1


the vector equation 1

0
2

 = x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1


is equivalent to a system of linear equations with augmented matrix 1 0 0 1

0 1 0 0
0 0 1 2


whose solution particular solution are the coordinates of ~u in basis E and im-
plies the vector equality 1

0
2

 = 1

 1
0
0

+ 0

 0
1
0

+ 2

 0
0
1


In other words the representation of ~u in basis E is

RE

 1
0
2

 =

 1
0
2


E
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For the same vector space and a different basis B =
{
~b1,~b2,~b3

}
where

~b1 =

 1
−1

0

 ,~b2 =

 0
1
−1

 ,~b3 =

 0
0
1


the vector equation 1

0
2

 = x1

 1
−1

0

+ x2

 0
1
−1

+ x3

 0
0
1


corresponds to a system of linear equations with augmented matrix 1 0 0 1

−1 1 0 0
0 −1 1 2


whose particular solution consists of the coordinates of vector ~u in basis B and
implies the vector equality 1

0
2

 = 1

 1
−1

0

+ 1

 0
1
−1

+ 3

 0
0
1


In other words the representation of ~u in basis B is

RB

 1
0
2

 =

 1
1
3


B

Example: in the vectors space R3 the subset

S =


 X

Y
Z

 | 3X + 6Y = 2Z


is a subspace, which means it is a vector space on its own. For vector ~u ∈ S
where

~u =

 4
−3
−3


and basis B =

{
~b1,~b2

}
where

~b1 =

 2
−1

0

 ,~b2 =

 0
1
3


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the vector equation 4
−3
−3

 = x1

 2
−1

0

+ x2

 0
1
3


is equivalent to a system of linear equations with augmented matrix 2 0 4

−1 1 −3
0 3 −3


whose particular solutions are the coordinates of ~u in basis B and imply the
vector equality  4

−3
−3

 = 2

 2
−1

0

− 1

 0
1
3


In other words the representation of vector ~u in basis B is

RB

 4
−3
−3

 =

(
2
−1

)
B

Consider an alternative basis D =
{
~d1, ~d2

}
where

~d1 =

 4
−5
−9

 , ~d2 =

 2
−3
−6


for the same vector ~u the vector equation 4

−3
−3

 = x1

 4
−5
−9

+ x2

 2
−3
−6


is equivalent to a system of linear equations with augmented matrix 4 2 4

−5 −3 −3
−9 −6 −3


whose particular solutions are the coordinates of ~u in basis D and imply the
vector equality  4

−3
−3

 = 3

 4
−5
−9

− 4

 2
−3
−6


In other words the representation of vector ~u in basis D is

RD

 4
−3
−3

 =

(
3
−4

)
D
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Example: consider P2 – the vector space of polynomials of degree at most
two. For vector ~u where

~u = −x2 + 5x+ 3

and basis B =
{
~b1,~b2,~b3

}
where

~b1 = 6x2 − 39x+ 23
~b2 = −5x2 + 33x− 19
~b3 = −x2 + 7x− 4.

For the same vector ~u the vector equation

−x2 + 5x− 3 = α1

(
6x2 − 39x+ 23

)
+ α2

(
−5x2 + 33x− 19

)
+ α3

(
−x2 + 7x− 4

)
is equivalent to a system of linear equations with augmented matrix 23 −19 −4 −3

−39 33 7 5
6 −5 −1 −1


whose particular solution are the coordinates of vector ~u in basis B and imply
the vector equality

−x2 + 5x− 3 = 0
(
6x2 − 39x+ 23

)
+ 1

(
−5x2 + 33x− 19

)
− 4

(
−x2 + 7x− 4

)
In other words the representation of vector ~u in basis B is

RB
(
−x2 + 5x− 3

)
=

 0
1
−4


B

.

Consider a different basis D =
{
~d1, ~d2, ~d3

}
where

~d1 = x2 − 8x+ 5
~d2 = x2 − 5x+ 3
~d3 = −x2 + 7x− 4

the vector equation

−x2 + 5x− 3 = α1

(
x2 − 8x+ 5

)
+ α2

(
x2 − 5x+ 3

)
+ α3

(
−x2 + 7x− 4

)
is equivalent to a system of linear equations with augmented matrix 5 3 −4 −3

−8 −5 7 5
1 1 −1 −1


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whose particular solution are the coordinates of vector ~u in basis D and imply
the vector equality

−x2 + 5x− 3 = 0
(
x2 − 8x+ 5

)
− 1

(
x2 − 5x+ 3

)
+ 0

(
−x2 + 7x− 4

)
. In other words the representation of vector ~u in basis D is

RD
(
−x2 + 5x− 3

)
=

 0
−1

0


D

.

Example: consider the vector space CVS described in §2.2. For vector ~u
where

~u =

[
4
−3

]
and basis B =

{
~b1,~b2

}
where

~b1 =

[
3
0

]
,~b2 =

[
2
1

]
By equating the components in the vector equation[

4
−3

]
= x1 �

[
3
0

]
⊕ x2 �

[
2
1

]
=

[
x1 + 2

0

]
⊕
[

2
x2

]
=

[
x1 + 2

x2

]
one obtains a system of linear equation with augmented matrix(

1 0 2
0 1 −3

)
.

whose solution implies[
4
−3

]
= 2�

[
3
0

]
− 3�

[
2
1

]
.

In other words the coordinates of vector ~u in basisB, equivalently its represen-
tation in basis B is

RB
([

4
−3

])
=

(
2
−3

)
B

.

Consider a different basis D =
{
~d1, ~d2

}
where

~d1 =

[
0
1

]
, ~d2 =

[
3
−1

]
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the vector equation is[
4
−3

]
= x1 �

[
0
1

]
⊕ x2 �

[
3
−1

]
=

[
−2x1 + 2

x1

]
⊕
[
x2 + 2
−x2

]
=

[
−2x1 + x2 + 2

x1 − x2

]
and its corresponding system of linear equation(

−2 1 2
1 −1 −3

)
implies [

4
−3

]
= 1�

[
0
1

]
⊕ 4�

[
3
−1

]
.

The coordinates of vector ~u in basis D, equivalently its representation in basis
D is

RD
([

4
−3

])
=

(
1
4

)
D

Recall: In the vectors space R3 the subset

S =


 X

Y
Z

 | 3X + 6Y = 2Z


is a subspace and

S =

〈 2
−1

0

 ,

 0
1
3

 ,

 2
0
3

〉

For the vector ~u =

 4
−3
−3

 the vector equation

 4
−3
−3

 = x1

 2
−1

0

+ x2

 0
1
3

+ x3

 2
0
3


is equivalent to a system of linear equations with augmented matrix 2 0 2 4

−1 1 0 −3
0 3 3 −3


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that has infinitely many solutions. For example 4
−3
−3

 = 2

 2
−1

0

− 1

 0
1
3

+ 0

 2
0
3


= −1

 2
−1

0

− 4

 0
1
3

+ 3

 2
0
3


In other words vector ~u cannot be represented in a unique way. The ambiguity
is the reason to require linearly independent vectors in a basis.

Theorem 31. In a vector space a subset B is a basis if and only if any vector can be
represented in a unique way as a linear combination of the vectors in B.

Proof. If B is a basis then by definition every vector in the vector space is rep-
resented in a unique way. Conversely, if every vector in the vector space can be
represented in a unique way as a linear combination of the vectors in B, then
by definition B spans the vector space. The zero vector can be represented as
a linear combination of the vectors in B by taking all coefficients as zero and
apply Theorem 8. Since by assumption there is only one way to represent ev-
ery vector, this is the only way to represent the zero vector, which means the
vectors in B are linearly independent and thus B is a basis.

2.10.1 Change of basis

Let ~u ∈ V and let B and E be two bases for V. Given the coordinates of ~u with
respect to E what are its coordinates with respect to B? We will illustrate the
answer with a few examples.

Example: Recall from §2.10 bases E and B for R3.

R3 = 〈E〉 =

〈 1
0
0

 ,

 0
1
0

 ,

 0
0
1

〉

〈B〉 =

〈 1
−1

0

 ,

 0
1
−1

 ,

 0
0
1

〉

For each basis vector E compute its representation in basis B. For ~e1 solve 1
0
0

 = x1

 1
−1

0

+ x2

 0
1
−1

+ x3

 0
0
1


to obtain

RB (~e1) =

 1
1
1


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For ~e2 solve  0
1
0

 = x1

 1
−1

0

+ x2

 0
1
−1

+ x3

 0
0
1


to obtain

RB (~e2) =

 0
1
1


For ~e3 solve  0

0
1

 = x1

 1
−1

0

+ x2

 0
1
−1

+ x3

 0
0
1


to obtain

RB (~e3) =

 0
0
1


Write the representations in that order to a matrix

RE→B (id) =

 1 0 0
1 1 0
1 1 1

 .

The result is the change of basis from basis E to basis B. For that matrix the
following matrix equation is satisfied

RB(~u) = RE→B (id)RE(~u)

with the values from the example 1
1
3


︸ ︷︷ ︸
RB(~u)

=

 1 0 0
1 1 0
1 1 1


︸ ︷︷ ︸
RE→B(id)

 1
0
2


︸ ︷︷ ︸
RE(~u)

.

Example: Recall from §2.10 bases B and D for the vectors space

S =


 X

Y
Z

 | 3X + 6Y = 2Z

 .
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For each basis vector B compute its representation in basis D

S = 〈B〉 =

〈 2
−1

0

 ,

 0
1
3

〉

〈D〉 =

〈 4
−5
−9

 ,

 2
−3
−6

〉

For~b1 solve  2
−1

0

 = x1

 4
−5
−9

+ x2

 2
−3
−6


to obtain

RD
(
~b1

)
=

(
2
−3

)
For~b2 solve  0

1
3

 = x1

 4
−5
−9

+ x2

 2
−3
−6


to obtain

RD
(
~b2

)
=

(
1
−2

)
.

Write the representations in that order to a matrix

RB→D (id) =

(
2 1
−3 −2

)
The result is the change of basis from basis B to basis D. For that matrix the
following matrix equation is satisfied

RD(~u) = RB→D (id)RB(~u)

with the values from the example(
3
−4

)
=

(
2 1
−3 −2

)(
2
−1

)

Example: Recall from §2.10 bases B and D for the vectors space P2. For each
basis vector B compute its representation in basis D

P2 = 〈B〉 =
〈
6x2 − 39x+ 23, −5x2 + 33x− 19, −x2 + 7x− 4

〉
〈D〉 =

〈
x2 − 8x+ 5, x2 − 5x+ 3, −x2 + 7x− 4

〉
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For~b1 solve

6x2 − 39x+ 23 = α1

(
x2 − 8x+ 5

)
+ α2

(
x2 − 5x+ 3

)
+ α3

(
−x2 + 7x− 4

)
to obtain

RD
(
~b1

)
=

 1
2
−3


For~b2 solve

−5x2 + 33x− 19 = α1

(
x2 − 8x+ 5

)
+ α2

(
x2 − 5x+ 3

)
+ α3

(
−x2 + 7x− 4

)
to obtain

RD
(
~b2

)
=

 0
−1

4


For~b3 solve

−x2 + 7x− 4 = α1

(
x2 − 8x+ 5

)
+ α2

(
x2 − 5x+ 3

)
+ α3

(
−x2 + 7x− 4

)
to obtain

RD
(
~b3

)
=

 0
0
1


Write the representations in that order to a matrix

RB→D (id) =

 1 0 0
2 −1 0
−3 4 1


The result is the change of basis from basis B to basis D. For that matrix the
following matrix equation is satisfied

RD(~u) = RB→D (id)RB(~u)

with the values from the example 0
−1

0

 =

 1 0 0
2 −1 0
−3 4 1

 0
1
−4

 .

Example: Recall from §2.10 bases B and D the vector space CVS described
in §2.2.

CVS = 〈B〉 =

〈[
3
0

]
,

[
2
1

]〉

〈D〉 =

〈[
0
1

]
,

[
3
−1

]〉
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For each basis vector B compute its representation in basis D. For~b1 solve[
3
0

]
= α1 �

[
0
1

]
⊕ α2 �

[
3
−1

]
to obtain

RD
(
~b1

)
=

(
−1
−1

)
For~b2 solve [

2
1

]
= α1 �

[
0
1

]
⊕ α2 �

[
3
−1

]
to obtain

RD
(
~b2

)
=

(
−1
−2

)
Write the representations in that order to a matrix

RB→D (id) =

(
−1 −1
−1 −2

)
The result is the change of basis from basis B to basis D. For that matrix the
following matrix equation is satisfied

RD(~u) = RB→D (id)RB(~u)

with the values from the example(
1
4

)
=

(
−1 −1
−1 −2

)(
2
−3

)
.

2.11 Rank of a matrix

Theorem 32. Let A be a square matrix for which there is a square matrix B such that
AB = I . Then the columns of A are linearly independent.

Proof. LetA be k×k matrix. SinceA is invertible then there existsA−1 such that
AA−1 = I . In the last multiplication it follows that the columns of I are linear
combinations of the columns of A. Denote the columns of A as ~a1, . . . , ~ak and
suppose by contradiction that ~a1, . . . , ~ak are linearly dependent. Let ~b1, . . . , ~bm,
where m < k be a set with largest cardinality such that ~b1, . . . , ~bm are linearly
independent. Then the columns of I are linear combinations of ~b1, . . . , ~bm. This
follows from the fact that ~a1, . . . , ~ak are linear combinations of ~b1, . . . , ~bm. Then
by Theorem 20 the columns of I are linearly dependent, which is a contradic-
tion with Theorem 15.

Recall Theorem 4
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If for a matrix A there exists matrices B and C such that AB = I
and AC = 0 then C = 0, where 0 is the zero matrix.

Here is an alternative proof using linear dependence and independence:

Proof. Let A be k × k matrix and assume by contradiction AB = 0 and B 6= 0.
Let the jth row of B contain a non-zero element. Denote the jth row of B by
~bj
t
. Then A~bj

t
= ~0, which means that the columns of A are linear dependent

contradicting Theorem 32.

Theorem 33. Let A be n×m matrix. Then the number of linearly independent rows
equals the number of linearly independent columns.

Proof. Suppose A’s columns are spanned by ~b, . . . ,~br then there is an r × m
matrix C such that

[~a1 . . .~am] = A = BC = [~b1 . . .~br]C.

By properties of matrix multiplication the rows of A are linear combinations of
the rows of C and therefore the rows of A contain at most r linearly indepen-
dent rows. Thus the number of linear independent rows of A do not exceed
the number of linear independent columns of A. Applying the same argument
for the transpose of A we obtain that the number of linearly independent rows
of A equals the number of linearly independent columns of A.

Example: Illustration of the above proof for the matrix

A =


1 −2 1 4 −2
2 −4 3 8 −3
1 −2 2 5 −1
1 −2 1 0 −2


we have that

A︷ ︸︸ ︷
1 −2 1 4 −2
2 −4 3 8 −3
1 −2 2 5 −1
1 −2 1 0 −2

 =

B︷ ︸︸ ︷
1
2
1
1︸︷︷︸
~b1

1
3
2
1︸︷︷︸
~b2

4
8
5
0︸︷︷︸
~b3



C︷ ︸︸ ︷ 1 −2 0 0 −3
0 0 1 0 1
0 0 0 1 0



In this case n = 4, m = 5 and r = 3.

Definition 42 (rank of a matrix). The rank of a matrix A is the number of linear
independent columns of A denoted by rank(A).
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Example: For the matrix A from the previous example we have that the fol-
lowing linear dependence relations

−2
−4
−2
−2

 = −2


1
2
1
1

+ 0


1
3
2
1

+ 0


4
8
5
0



−2
−3
−1
−2

 = −3


1
2
1
1

+


1
3
2
1

+ 0


4
8
5
0


and the only solution to

0
0
0
0

 =


1
2
1
1

x1 +


1
3
2
1

x2 +


4
8
5
0

x3

is  x1
x2
x3

 =

 0
0
0


which means that the matrix A has three linearly independent columns. In
terms of rows we have the following relation

row 3︷ ︸︸ ︷
(1, −2, 2, 5, −1) =

−3

4

row 1︷ ︸︸ ︷
(1, −2, 1, 4, −2)

+

row 2︷ ︸︸ ︷
(2, −4, 3, 8, −3)

+
−1

4

row 4︷ ︸︸ ︷
(1, −2, 1, 0, −2)

and the only solution to

(0, 0, 0, 0, 0) = (1, −2, 1, 4, −2)x1

+ (2, −4, 3, 8, −3)x2

+ (1, −2, 1, 0, −2)x3

is  x1
x2
x3

 =

 0
0
0


which means the matrix A has three linearly independent rows.
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Theorem 34. Suppose the rows (columns) of square A are linearly independent then
A can be written as a product of elementary matrices.

Proof. The columns ofA form a basis for the n-dimensional vector space Kn. In-
deed if ~ei is not in the span of the columns ofA = (~c1, . . . ,~cn) then {~c1, . . . ,~cn, ~ei}
are linearly independent (why?), which means in Kn we have found n+ 1 lin-
early independent vectors contradiction with the fact that the dimension of
Kn is a n. Therefore the standard basis can be represented as linear combina-
tions of the columns of A. We can solve A~x = ~ei so there exists ~ci such that
A~ci = ~ei and by setting B = (~c1, . . . ,~cn) we obtain that AB = I thus A is in-
vertible. Using the matrix representation of Gaussian operations we can write
A = B−1 = Em . . . E1 where each Ei is an elementary matrix.

Theorem 35. A system of linear equation Ax = b has a solution if and only if the
rank of the matrix of the system A equals the rank of the augmented matrix (A|b) or
rank(A) = rank(A|b).

Proof. By Theorem 24 Ax = b has a solution if and only if b is in the span of
the columns of A. By Theorem 25 the vector b is in span of the columns of A if
and only if the span of the columns of A and the span of the columns of (A|b)
are equal. Since the number of linear independent columns of a matrix is by
definition the rank of the matrix the result follows.

Theorem 36. Ax = b has a solution if and only if AT y = 0⇒ bT y = 0

Proof. Let ~ai denote the ith column of matrix A that is A = (~a1,~a2, . . . ,~an).

[⇒] Theorem 24 then if Ax = b has a solution then ~b is in the span of the
columns of A and therefore~b = α1~a1 + · · ·αn~an for some constants α1, . . . , αn.
Let ~y be any vector such that ~yTA = ~0 this means that ~yT~aj = 0 for all j
by properties of matrix multiplication. Then ~yT~b = ~yT (α1~a1 + · · · + αn~an) =
α1~y

T~a1 + · · ·+ αn~y
T~an) = α10 + · · ·+ αn0 = 0

[⇐] Assume AT y = 0⇒ bT y = 0 then(
AT

bT

)
y = 0⇔

(
AT

)
y = 0

Let B =

(
AT

bT

)
In particular this means that that the number of linearly

independent columns of B equals the number of linear independent columns
of AT . Indeed if the AT y = ~0 then by our assumption By = ~0. Thus for any
set of linear dependent columns of AT the corresponding set of columns of B
is also linearly dependent. So the number of linear independent columns of
B is less than or equal to the number of linear independent columns of AT .
On the other hand if a set of columns in AT are linearly independent then the
corresponding set of columns of B is also linearly independent as adding an
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equation to a system of linear equation cannot increase the number of solutions
(and for linear independence we have only one solution namely all zeroes).
Thus the we have rank(A) = rank(AT ) = rank(B) = rank(BT ) = rank(B) =
rank(A|b) and by Theorem 35 the result follows.
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Chapter 3

Linear Transformations

3.1 Basic definitions

Definition 43 (linear map). Let U and W be two vector spaces. A function φ :
U→W is linear map (homomorphism) if

1. ∀~u,~v ∈ U, φ(~u+ ~v) = φ(~u) + φ(~v)

2. ∀c ∈ K,∀~u ∈ U, φ(c~u) = cφ(~u)

In this case U is called the domain and W is called the co-domain of φ.

Theorem 37. φ is a linear map if and only if φ(α~u+ β~v) = αφ(~u) + βφ(~v).

Proof. Assume

∀α, β ∈ K,∀~u,~v ∈ U, φ(α~u+ β~v) = αφ(~u) + βφ(~v).

With α = 1 and β = 1 for all ~u,~v ∈ U we get

φ(~u+ ~v) = φ(1~u+ 1~v)

= 1φ(~u) + 1φ(~v)

= φ(~u) + φ(~v)

Thus the first condition of Definition 43 is satisfied.
With β = 0 and ~v = ~u for all ~u,~v ∈ U we get

φ(α~u) = φ
(
α~u+~0U

)
= φ(α~u+ 0~0U )

= αφ(~u) + 0φ
(
~0U

)
= αφ(~u) +~0W

= αφ(~u)
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Thus the second condition of Definition 43 is satisfied.
For the converse assume

1. ∀~u,~v ∈ U, φ(~u+ ~v) = φ(~u) + φ(~v)

2. ∀c ∈ K,∀~u ∈ U, φ(c~u) = cφ(~u)

then

φ(α~u+ β~v) = φ (α~u) + φ (β~v)

= αφ(~u) + βφ (~v)

Which completes the argument.

We will use the condition in Theorem 37 as definition for linear map in some
of the arguments, without explicitly stating that it is equivalent to Definition 43.

Definition 44. [isomorphism] Let U and W be two vector spaces. A function φ :
U→W is an isomorphism between U and W if

1. φ is one-to-one and onto (correspondence)

(a) onto ∀~w ∈W,∃~v ∈ U : φ(~v) = ~w

(b) 1-1 ∀~u,~v ∈ U, φ(~u) = φ(~v)⇒ ~u = ~v

2. φ is a linear map.

We write U ∼= W if there is an isomorphism between U and W.

Definition 45. A linear map (homomorphism) from a vector space V to itself is called
a linear transformation.

Definition 46 (automorphism). An isomorphism from U to itself is called an auto-
morphism.

3.1.1 Note on terminology

Let φ : U→W then

homomorphism: also linear (map/function) φ (α~u+ β~v) = αφ (~u) + βφ (~v);

transformation: U = W that is domain and co-domain are the same

isomorphism: φ is all of homomorphism, one-to-one and onto

automorphism: φ is both isomorphism and transformation
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3.2 Examples

3.2.1 Reflection

Reflection along the xy-plane.

φ

 x0
x1
x2

 =

 x0
x1
−x2



Onto: Given any

 y0
y1
y2

 the system of linear equations

 1 0 0
0 1 0
0 0 −1

 x0
x1
x2

 =

 y0
y1
y2


always has a solution for example, so the map is onto.

One-to-one: Given any

 y0
y1
y2

 the system of linear equations

 1 0 0
0 1 0
0 0 −1

 x0
x1
x2

 = (y0, y1, y2)

always has a unique solution: x0
x1
x2

 =

 y0
y1
−y2


so the map is one-to-one.
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Linearity: We have

φ (a~u+ b~v) = φ

a
 u0

u1
u2

+ b

 v0
v1
v2


= φ

 au0 + bv0
au1 + bv1
au2 + bv2


=

 au0 + bv0
au1 + bv1
−au2 − bv2


= a

 u0
u1
−u2

+ b

 v0
v1
−v2


= aφ

 u0
u1
u2

+ b φ

 v0
v1
v2


= aφ (~u) + b φ (~v)

in other words
φ (a~u+ b~v) = aφ (~u) + b φ (~v)

thus the function is a linear map.
This function is

1. one-to-one

2. onto

3. homomorphism

4. linear transformation

5. isomorphism

6. automorphism

With range diagonal matrices

If we have the map

φ

 x0
x1
x2

 =

 x0 0 0
0 x1 0
0 0 −x2


from R3 to the set of 3× 3 diagonal matrices, similar to the above the new func-
tion is
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1. one-to-one

2. onto

3. homomorphism

4. isomorphism

but it is not

1. linear transformation

2. automorphism

With range 3× 3 matrices

If we have the map

φ

 x0
x1
x2

 =

 x0 0 0
0 x1 0
0 0 −x2


from R3 to the set of all 3× 3 matrices, similar to the above the new function is

1. one-to-one

2. homomorphism

but it is not

1. onto

2. isomorphism

3. linear transformation

4. automorphism

3.2.2 Example: exponential coordinate

φ

 u0
u1
u2

 =

 eu0

u1
u1 + u2


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Onto: Given

 u0
u1
u2

 from calculus eu0 = −1 has no solution so there is no

vector

 u0
u1
u2

 such that

φ

 u0
u1
u2

 =

 −1
0
0


thus the map is not onto.

One-to-one: From calculus eu0 = y is one to one function. So if eu0

u1
u1 + u2

 = (y0, y1, y2)

has a solution, that solution is unique, so the map is one-to-one.

Linearity: We have

φ (a~u+ b~v) = φ

2

 1
0
0

+ 0

 2
0
0


= φ

 2
0
0


=

 e2

0
0


6=

 2 e
0
0


= 2

 e
0
0

+ 0

 e2

0
0


= 2φ

 1
0
0

+ 0φ

 2
0
0


in other words

φ (a~u+ b~v) 6= aφ (~u) + b φ (~v)
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thus the function is not a linear map.
This function is

1. one-to-one

2. not onto

3. not homomorphism

4. not linear transformation

5. not isomorphism

6. not automorphism

3.2.3 Example: polynomial coordinate

φ

 u0
u1
u2

 =

 (u0 + 1)(u0 − 1)u0
u2
u1



Onto: Given

 v0
v1
v2

 from calculus x3 − x = y is an onto function so for any

y0 there is u0 such that u30 − u0 = y0 and

φ−1

 v0
v1
v2

 =

 u0
y2
y1


thus the map is onto.

One-to-one: From calculus x3−x = y is not one-to-one function. For example

φ

 1
0
0

 =

 0
0
0

 = φ

 0
0
0

 =

so the map is not one-to-one.
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Linearity: We have

φ (a~u+ b~v) = φ

2

 1
0
0

+ 0

 1
0
0


= φ

 2
0
0


=

 6
0
0


6=

 0
0
0


= 2

 0
0
0

+ 0

 0
0
0


= 2φ

 1
0
0

+ 0φ

 1
0
0


in other words

φ (a~u+ b~v) 6= aφ (~u) + b φ (~v)

thus the function is not a linear map.
This function is

1. not one-to-one

2. onto

3. not homomorphism

4. not linear transformation

5. not isomorphism

6. not automorphism

3.2.4 Polynomials to upper triangular matrices:

Consider the map from polynomials of degree two to upper triangular 2 × 2
matrices.

φ
(
u2x

2 + u1x+ u0
)

=

(
u0 + u1 −u1 + u2

0 u0 + 2u2

)
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Let S denote the following system of linear equations in matrix form 1 1 0
0 −1 1
1 0 2

 u0
u1
u2

 =

 y0
y1
y2


onto For any vector

(
y0 y1
0 y2

)
the system of linear equations S always has a

solution for any values

 y0
y1
y2

 so the map is onto.

0ne-to-one For any vector
(
y0 y1
0 y2

)
the system of linear equations S always

has a unique solution for any values

 y0
y1
y2

so the map is one-to-one.

Linearity: We have

φ (a~u+ b~v) = φ
(
a
(
u2x

2 + u1x+ u0
)

+ b
(
v2x

2 + v1x+ v0
))

= φ
(
(au2 + bv2)x2 + au0 + bv0 + (au1 + bv1)x

)
=

(
au0 + au1 + bv0 + bv1 −au1 + au2 − bv1 + bv2

0 au0 + 2 au2 + bv0 + 2 bv2

)

=

(
a(u0 + u1) + b(v0 + v1) −a(u1 − u2)− b(v1 − v2)

0 a(u0 + 2u2) + b(v0 + 2 v2)

)

= a

(
u0 + u1 −u1 + u2

0 u0 + 2u2

)
+ b

(
v0 + v1 −v1 + v2

0 v0 + 2 v2

)
= aφ

(
u2x

2 + u1x+ u0
)

+ bφ
(
v2x

2 + v1x+ v0
)

in other words
φ (a~u+ b~v) = aφ (~u) + b φ (~v)

thus the function is a linear map.
This function is

1. one-to-one

2. onto

3. homomorphism (linear map)

4. not linear transformation

5. isomorphism
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6. not automorphism

If in the above example we change the co-domain to the set of all square
matrices instead of upper triangular square matrices, the function will be

1. one-to-one

2. not onto

3. homomorphism (linear map)

4. not linear transformation

5. not isomorphism

6. not automorphism

3.2.5 Example:M2×3 toM3×2 matrices

Domain 2× 3 matrices, co-domain 3× 2 matrices

φ (~u) = φ

((
u0 u1 u2
u3 u4 u5

))

= ~w =

 y0 y1
y2 y3
y4 y5


=

 u0 + u2 + u5 u1 − 2u3
u0 − 3u1 + 2u3 2u1 + u5
u1 + u2 − 2u3 2u1 − 4u3


Let S denote the following system of linear equations in matrix form

1 0 1 0 0 1
0 1 0 −2 0 0
1 −3 0 2 0 0
0 2 0 0 0 1
0 1 1 −2 0 0
0 2 0 −4 0 0




u0
u1
u2
u3
u4
u5

 =


y0
y1
y2
y3
y4
y5


onto For vector

 3 0
−2 0

0 1

 the corresponding system of linear equations S


1 0 1 0 0 1
0 1 0 −2 0 0
1 −3 0 2 0 0
0 2 0 0 0 1
0 1 1 −2 0 0
0 2 0 −4 0 0




u0
u1
u2
u3
u4
u5

 =


3
0
−2

0
0
1


has no solution, so the map is not onto.
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0ne-to-one For vectors

~u =

(
4 2 1
1 0 −4

)
~v =

(
0 0 1
0 −5 0

)
we have

φ

((
4 2 1
1 0 −4

))
=

 1 0
0 0
1 0

 = φ

((
0 0 1
0 −5 0

))
so the map is not one-to-one.

Linearity: We have

φ (a~u+ b~v) = φ

(
a

(
u0 u1 u2
u3 u4 u5

)
+ b

(
v0 v1 v2
v3 v4 v5

))
= φ

((
au0 + bv0 au1 + bv1 au2 + bv2
au3 + bv3 au4 + bv4 au5 + bv5

))

=

 au0 + au2 + au5 + bv0 + bv2 + bv5 au1 − 2 au3 + bv1 − 2 bv3
au0 − 3 au1 + 2 au3 + bv0 − 3 bv1 + 2 bv3 2 au1 + au5 + 2 bv1 + bv5

au1 + au2 − 2 au3 + bv1 + bv2 − 2 bv3 2 au1 − 4 au3 + 2 bv1 − 4 bv3


=

 a(u0 + u2 + u5) + b(v0 + v2 + v5) a(u1 − 2u3) + b(v1 − 2 v3)
a(u0 − 3u1 + 2u3) + b(v0 − 3 v1 + 2 v3) a(2u1 + u5) + b(2 v1 + v5)

a(u1 + u2 − 2u3) + b(v1 + v2 − 2 v3) 2 a(u1 − 2u3) + 2 b(v1 − 2 v3)


= a

 u0 + u2 + u5 u1 − 2u3
u0 − 3u1 + 2u3 2u1 + u5
u1 + u2 − 2u3 2u1 − 4u3

+ b

 v0 + v2 + v5 v1 − 2 v3
v0 − 3 v1 + 2 v3 2 v1 + v5
v1 + v2 − 2 v3 2 v1 − 4 v3


= aφ

((
u0 u1 u2
u3 u4 u5

))
+ bφ

((
v0 v1 v2
v3 v4 v5

))
in other words

φ (a~u+ b~v) = aφ (~u) + b φ (~v)

thus the function is a linear map.
The above example is

1. not one-to-one

2. not onto

3. homomorphism (linear map)

4. not linear transformation

5. not isomorphism

6. not automorphism
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With range 2× 3 matrices

If the above example is modified to

φ (~u) = φ

((
u0 u1 u2
u3 u4 u5

))
= ~w =

(
y0 y2 y4
y1 y3 y5

)
=

(
u0 + u2 + u5 u0 − 3u1 + 2u3 u1 + u2 − 2u3

u1 − 2u3 2u1 + u5 2u1 − 4u3

)
the resulting map is

1. not one-to-one

2. not onto

3. homomorphism (linear map)

4. linear transformation

5. not isomorphism

6. not automorphism

3.3 Isomorphic Vector Spaces

Theorem 38. The representation map from a vector space V with basis B is a vec-
tor space with basis ~b1, . . . ,~bd to the vector space of standard column vectors with d
components Kd is an isomorphism.

RB : V→ Kd RB(~u) = RB(α1
~b1 + · · ·+ αd~bd) =

 α1

...
αd


B

Proof. onto Let

 c1
...
cd

 ∈ Kd consider ~v = c1~b1 + · · ·+ cd~bd. We haveRB(~v) =

 c1
...
cd



1-1 Suppose RB(~u) =

 c1
...
cd

 =

 a1
...
ad

 = RB(~v). Then ~u = c1~b1 + · · · +

cd~bd = a1~b1 + · · ·+ ad~bd = ~v.
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linear 1.

RB(α~u) = RB(αc1~b1 + · · ·+ αcd~bd)

=

 αc1
...
αcd

 = α

 c1
...
cd


= αRB(~u)

2.

RB(~u+ ~v) = RB
(

(c1 + a1)~b1 + · · ·+ (cd + ad)~bd

)

=

 c1 + a1
...

cd + ad

 =

 c1
...
cd

+

 a1
...
ad


= RB(~u) +RB(~v)

Theorem 39. If φ : V → W is an isomorphism then φ−1 : W → V is also an
isomorphism.

Proof. An isomorphism is a correspondence between the sets so φ has an in-
verse function φ−1W → V which is also 1-1 and onto Since φ preserves linear
combinations, so also does φ−1. Let ~w1, ~w2 ∈ W. Since φ is onto there are
~v1, ~v2 ∈ V such that ~w1 = φ(~v1) and ~w2 = φ(~v2). Then

f−1(c1 · ~w1 + c2 · ~w2) = f−1
(
c1 · f(~v1) + c2 · f(~v2)

)
= f−1( f

(
c1~v1 + c2~v2)

)
= c1~v1 + c2~v2

= c1 · f−1(~w1) + c2 · f−1(~w2)

since f−1(~w1) = ~v1 and f−1(~w2) = ~v2.

Theorem 40. Isomorphism is an equivalence relation

Proof. reflexive identity map

symmetric by Theorem 39

transitive standard argument from calculus

Theorem 41. If two vector spaces are isomorphic then they have the same dimension.
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Proof.

Theorem 42. If two vector spaces (over the same field) have the same dimension then
they are isomorphic.

Proof. by the representation map both are isomorphic to Kd, by transitivity
isomorphic to each other.

3.4 Properties of linear maps

Theorem 43. For a linear map φ : V→W we have that φ(~0V ) = ~0W .

Proof. Self study.

Theorem 44. If A is a linear transformation then it maps linearly dependent vectors
to linearly dependent vectors

Proof. Self study.

Theorem 45. If A is a linear transformation then it maps spanning sets to spanning
sets.

Proof. Self study.

3.5 Linear extensions

In a standard calculus course you learn that in the Euclidean plane given any
two points you can define a line. That is given two pairs of numbers you can
create a unique equation y = Ax + B that describes a line. The same idea can
be generalized to linear maps. That is you can describe a linear map using
just the definition of the map on any basis. Comparing with the line example
you need the x-coordinates of the points are your basis and the y coordinates
help identify the coefficients A and B. For linear maps the x-coordinates are
the basis vectors, the y coordinates are the images of those x coordinates, just
as if you plug in the x value of a point P to the line equation you get the
corresponding y coordinates.

Theorem 46. A homomorphism is determined by its action on a basis: if V is a vector
space with basis~b1, . . . ,~bn and W is a vector space with elements ~w1, . . . , ~wn (perhaps
not distinct elements) then there exists a homomorphism from φ : V →W such that
φ(~bi) = ~wi, and that homomorphism is unique.

Proof. well-defined let ~v ∈ V and let ~v = v1~b1 + · · ·+ vn~bn. Define the associ-
ated output by using the same coordinates φ(~v) = v1 ~w1+ · · ·+vn ~wn. This
is well defined because, with respect to the basis, since the representation
of each vector ~v in the domain is unique for any given basis.
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homomorphism This map is a homomorphism because it preserves linear com-
binations: where ~u = u1~b1 + · · ·+ un~bn and ~v = v1~b1 + · · ·+ vn~bn, here is
the calculation.

φ (s~u+ t~v) = φ
(

(su1 + tv1)~b1 + · · ·+ (sun + tvn)~bn

)
= (su1 + tv1)φ

(
~b1

)
+ · · ·+ (sun + tvn)φ

(
~bn

)
= (su1 + tv1)~w1 + · · ·+ (sun + tvn)~wn

= sφ (~u) + φ (~v)

unique This map is unique because if φ̂ : V → W is another homomorphism
such that φ̂(~bi) = ~wi for each i then φ and φ̂ agree on all of the vectors in
the domain.

φ̂(~v) = φ̂(c1~b1 + · · ·+ cn~bn)

= c1φ̂(~b1) + · · ·+ cnφ̂(~bn)

= c1 ~w1 + · · ·+ cn ~wn

= φ(~v)

They have the same action so they are the same function.

Definition 47. Let V and W be two vector spaces and let B = {~b1, . . . ,~bd} be a basis
for V. A function f defined on the basis B with f : B → W is extended linearly
to a function φ : V →W if ∀~u ∈ V with ~u = u1~b1 + · · · + ud~bd, the action of φ is
defined as

φ(~u) = φ(u1~b1 + · · ·+ ud~bd) = u1f(~b1) + · · ·+ udf(~bd)

The function φ is naturally a homomorphism.

3.5.1 R2 → R4 example

Suppose you are given:

f

((
1
0

))
=


2
0
1
2

 f

((
0
1

))
=


1
1
1
1


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then

φ

((
x0
x1

))
= φ

(
x0

(
1
0

)
+ x1

(
0
1

))

= x0f

((
1
0

))
+ x1f

((
0
1

))

= x0


2
0
1
2

+ x1


1
1
1
1

 =


2x0 + x1

x1
x0 + x1

2x0 + x1


for the vector

(
x0
x1

)
=

(
2
3

)
we compute

φ

((
2
3

))
= φ

(
2

(
1
0

)
+ 3

(
0
1

))

= 2f

((
1
0

))
+ 3f

((
0
1

))

= 2


2
0
1
2

+ 3


1
1
1
1

 =


7
3
5
7


Note: in general we can extend any set linearly as long as within the domain
of the function f linearity is preserved:

f

((
1
0

))
=


2
0
1
2

 f

((
0
1

))
=


1
1
1
1

 f

((
−2

2

))
=


−2

2
0
−2


we can still linearly extend f since

φ

((
−2

2

))
= φ

(
−2

(
1
0

)
+ 2

(
0
1

))

= −2φ

((
1
0

))
+ 2φ

((
0
1

))

= −2


2
0
1
2

+ 2


1
1
1
1

 =


−2

2
0
−2


= f

((
−2

2

))
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However, if the following was given:

f

((
1
0

))
=


2
0
1
2

 f

((
0
1

))
=


1
1
1
1

 f

((
−2

2

))
=


−1

0
0
−1


then

φ

((
−2

2

))
= φ

(
−2

(
1
0

)
+ 2

(
0
1

))

= −2φ

((
1
0

))
+ 2φ

((
0
1

))

= −2


2
0
1
2

+ 2


1
1
1
1

 =


−2

2
0
−2


6= f

((
−2

2

))
and the function cannot be linearly extended.

3.5.2 M3×2 → P6 example

Let: f :M3×2 → P6

f

 0 −5
0 0
0 1

 = 2x5 + 2x4 + 18x3 + 14x2 + 4x− 2

f

 0 1
0 0
0 0

 = −5x3 − x2 + 1

f

 0 0
0 −1
5 0

 = 39x5 + 15x4 − 36x3 + 74x2 + 38x+ 16

f

 0 4
1 0
0 0

 = −2x5 + x4 − 24x3 + x+ 6

f

 0 0
0 0
1 0

 = 6x5 + 3x4 − 5x3 + 15x2 + 7x+ 3

f

 1 0
0 0
1 0

 = 3x5 + 3x4 − 3x3 + 15x2 + 6x+ 3
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φ

 u0 u1
u2 u3
u4 u5

 = −(3u0 + 2u2 + 9u3 − 6u4 − 2u5)x5 + (u2 + 3u4 + 2u5)x4

+(2u0 − 5u1 − 4u2 + 11u3 − 5u4 − 7u5)x3

−(u1 − 4u2 − u3 − 15u4 − 9u5)x2

−(u0 − u2 + 3u3 − 7u4 − 4u5)x+ u1 + 2u2 − u3 + 3u4 + 3u5

φ

 −5 −3
0 −3
8 0

 = 90x5 + 24x4 − 68x3 + 120x2 + 70x+ 24

φ

 −1 −1
3 −2
5 2

 = 49x5 + 22x4 − 70x3 + 104x2 + 53x+ 28

3.5.3 P3 →M2×2 example

Let

f
(
x2 − 1

)
=

(
5 −5
0 20

)
f
(
−4x2 − x+ 4

)
=

(
−19 19

0 −76

)
f (1) =

(
3 0
1 −4

)
Extending linearly we have

φ
(
u2x

2 + u1x+ u0
)

=

(
3u0 − u1 + 8u2 u1 − 5u2

u0 + u2 −4u0 − 4u1 + 16u2

)

φ
(
x2 − 6

)
=

(
−10 −5
−5 40

)

φ
(
14x2 + 3x− 13

)
=

(
70 −67
1 264

)
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3.6 Rank nullity

Theorem 47. Under a homomorphism, the image of any subspace of the domain is a
subspace of the co-domain.

Proof. Let S be a subspace of φ : V →W. Then φ(S) is non-empty because of
the zero vector ~0V . If φ(~u) and φ(~v) are in the image of φ(S) then φ(a~u+ b~v) is
also in the image image of φ since a~u+ b~b ∈ S by the closure of S

Definition 48. The range space of a homomorphism φ : V→W is defined as

R(φ) = {φ(~v) | ~v ∈ V}

The dimension ofR(φ) is called rank of φ.

Example: for the linear extension φ in Section 3.5.3.

R (φ) =

〈(
5 −5
0 20

)(
−19 19

0 −76

)(
3 0
1 −4

)〉
=

〈(
5 −5
0 20

)(
3 0
1 −4

)〉

its rank is two.

Examples:

1. derivative transformation {1, x, x2} from P3 to P3 has rank two as the
image of the derivative is the set of all linear polynomials.

2. derivative transformation 〈{sinx, cosx}〉 has rank two as the image of the
transformation is all of the span of the two functions.

3. derivative {x, sinx, cosx} image is {1, sinx, cosx} the rank is three as the
image of the transformation is all of the span of {1, sinx, cosx}

4. Example in Section 3.2.5 has rank three.

Theorem 48. For any homomorphism the inverse image of a subspace of the co-domain
is a subspace of the domain.

Proof. Let φ : V→W be a homomorphism and let T be a subspace of the range
space of φ. Consider the inverse image of T. It is nonempty because it contains
~0V , since φ(~0V ) = ~0W and ~0W is an element of T as T is a subspace. To finish
we show that φ−1(T) is closed under linear combinations. Let ~v1 and ~v2 be two
of its elements, so that φ(~v1) and φ(~v2) are elements of T. Then c1~v1 +c2~v2 is an
element of the inverse image φ−1(T) because φ(c1~v1+c2~v2) = c1φ(~v1)+c2φ(~v2)
is a member of T.
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Example: for the linear extension φ in Section 3.5.3.

〈
x2 − 1,−4x2 − x+ 4

〉
= φ−1

(〈(
5 −5
0 20

)〉)
〈1〉 = φ−1

(〈(
3 0
1 −4

)〉)
P3 = φ−1

(〈(
5 −5
0 20

)(
3 0
1 −4

)〉)
Definition 49 (kernel, null space). The null space or kernel of φ : V→W is

ker (φ) = {~v ∈ V | φ(~v) = ~0W }.

The dimension of ker (φ) is called nullity of φ.

The kernel may be denoted as φ−1
(
~0
)

or N (φ).

Example for the linear extension φ in Section 3.5.3.

ker (φ) = φ−1
(〈(

0 0
0 0

)〉)
=

〈
−x2 − 5x+ 1

〉
it has nullity one.

Example the null space of the derivative operator is the set of all constants
and it has nullity one.

Theorem 49. Let φ : V → W be a linear map. Then dimV equals the sum of the
nullity of φ plus the rank of φ

dimV = dimR(φ) + dimN (φ)

Proof. Let φ : V → W be linear and let BN = {~β1, . . . , ~βk} be a basis for the
null space. Expand that to a basisBV = {~β1, . . . , ~βk, ~βk+1, . . . , ~βn} for the entire
domain. We shall show that BR = {φ(~βk+1), . . . , φ(~βn)} is a basis for the range
space. Then counting the size of the bases gives the result.

To see that BR is linearly independent, consider

~0W = ck+1φ(~βk+1) + · · ·+ cnφ(~βn) = φ(ck+1
~βk+1 + · · ·+ cn~βn)

and so ck+1
~βk+1 + · · · + cn~βn ∈ Nφ. As BN is a basis for the null space there

are scalars c1, . . . , ck satisfying this relationship.

c1~β1 + · · ·+ ck~βk = ck+1
~βk+1 + · · ·+ cn~βn

121



equivalently

c1~β1 + · · ·+ ck~βk − ck+1
~βk+1 − · · · − cn~βn = ~0V

But this is an equation among members of BV , which is a basis for V , so each
ci equals 0. Therefore BR is linearly independent.

To show that BR spans the range space consider a member of the range
space φ(~v). Express ~v as a linear combination ~v = c1~β1 + · · ·+ cn~βn of members
of BV . This gives

φ(~v) = φ(c1~β1 + · · ·+ cn~βn + ck+1(~βk+1) + · · ·+ cn(~βn))

= c1φ(~β1) + · · ·+ ckφ(~βk) + ck+1φ(~βk+1) + · · ·+ cnφ(~βn)

= c1~0W + · · ·+ ck~0W + ck+1φ(~βk+1) + · · ·+ cnφ(~βn)

= ck+1φ(~βk+1) + · · ·+ cnφ(~βn)

and since ~β1, . . . , ~βk are in the null space, we have that h(~v) = ~0W + · · ·+~0W +

ck+1h(~βk+1) + · · ·+ cnh(~βn). Thus, h(~v) is a linear combination of members of
BR, and so BR spans the range space.

3.7 Matrix representation of linear maps

Question: How to describe compactly linear transformations?

http://dev.w3.org/csswg/css3-3d-transforms/

matrix3d(<number>,<number>,<number>,<number>,<number>,<number>,

<number>,<number>,<number>,<number>,<number>,<number>,<number>,

<number>,<number>,<number>)

specifies a 3D transformation as a 4x4 homogeneous matrix of 16
values in column-major order.

Definition 50. Suppose that U and W are vector spaces of dimensions n and m with
bases B =

(
~b1,~b2, . . . ,~bn

)
and E = (~e1, ~e2, . . . , ~em), and that φ : U → W is a

linear map. If

RE(φ(~b1)) =


h1,1
h2,1

...
hm,1


E

. . . RE(φ(~bn)) =


h1,n
h2,n

...
hm,n


E
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then

RB→E(φ) =

 | | |
RE

(
φ(~b1)

)
RE

(
φ(~b2)

)
. . . RE

(
φ(~bn)

)
| | |



=


h1,1 h1,2 · · · h1,n
h2,1 h2,2 · · · h2,n

...
hm,1 hm,2 · · · hm,n


B→E

is the matrix representation of φ with respect to B → E.

3.7.1 d : P3 → P2

Let d : P3 → P2 denote the derivative function, where P3 the vector space of
polynomials of degree at most three and P2 is the vector space of polynomials
of degree at most two. For basis given below find the matrix representation of
d from basis BP3

to basis BP2
i.e.,

RBP3
→BP2

(d)

Bases B → E

Given P3 = 〈B〉 =
〈
~b0,~b1,~b2,~b3

〉
where

~b0 = 1
~b1 = x
~b2 = x2

~b3 = x3

and P2 = 〈E〉 = 〈~e0, ~e1, ~e2〉where

~e0 = 1

~e1 = x

~e2 = x2

For basis vector~b0, we compute

d (1) = 0

= x0~e0 + x1~e1 + x2~e2

= 0~e0 + 0~e1 + 0~e2 =

 0
0
0


E
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where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 0
0
0


For basis vector~b1, we compute

d (x) = 1

= x0~e0 + x1~e1 + x2~e2

= 1~e0 + 0~e1 + 0~e2 =

 1
0
0


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 1
0
0


For basis vector~b2, we compute

d
(
x2
)

= 2x

= x0~e0 + x1~e1 + x2~e2

= 0~e0 + 2~e1 + 0~e2 =

 0
2
0


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 0
2
0


For basis vector~b3, we compute

d
(
x3
)

= 3x2

= x0~e0 + x1~e1 + x2~e2

= 0~e0 + 0~e1 + 3~e2 =

 0
0
3


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 0
0
3


Solution is

RB→E (d) =

 0 1 0 0
0 0 2 0
0 0 0 3


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Bases B → G

Given P3 = 〈B〉 =
〈
~b0,~b1,~b2,~b3

〉
where

~b0 = 1
~b1 = x
~b2 = x2

~b3 = x3

and P2 = 〈G〉 = 〈~g1, ~g2, ~g3〉where

~g0 = x2 + x+ 1

~g1 = x2 + x

~g2 = x2

For basis vector~b0, we compute

d (1) = 0

= x0~g0 + x1~g1 + x2~g2

= 0~g0 + 0~g1 + 0~g2 =

 0
0
0


G

where the coordinates are obtained by solving 1 0 0
1 1 0
1 1 1

 x0
x1
x2

 =

 0
0
0


For basis vector~b1, we compute

d (x) = 1

= x0~g0 + x1~g1 + x2~g2

= 1~g0 − 1~g1 + 0~g2 =

 1
−1

0


G

where the coordinates are obtained by solving 1 0 0
1 1 0
1 1 1

 x0
x1
x2

 =

 1
0
0



125



For basis vector~b2, we compute

d
(
x2
)

= 2x

= x0~g0 + x1~g1 + x2~g2

= 0~g0 + 2~g1 − 2~g2 =

 0
2
−2


G

where the coordinates are obtained by solving 1 0 0
1 1 0
1 1 1

 x0
x1
x2

 =

 0
2
0


For basis vector~b3, we compute

d
(
x3
)

= 3x2

= x0~g0 + x1~g1 + x2~g2

= 0~g0 + 0~g1 + 3~g2 =

 0
0
3


G

where the coordinates are obtained by solving 1 0 0
1 1 0
1 1 1

 x0
x1
x2

 =

 0
0
3


Solution is

RB→G (d) =

 0 1 0 0
0 −1 2 0
0 0 −2 3


Bases A→ E

Given P3 = 〈A〉 = 〈~a0,~a1,~a2,~a3〉where

~a0 = −x3 + 2x2 + 2x+ 1

~a1 = x3 + x2 − 2

~a2 = x3 + 3x2 + 3x+ 2

~a3 = x3 + x2 + x+ 1

and P2 = 〈E〉 = 〈~e0, ~e1, ~e2〉where

~e0 = 1

~e1 = x

~e2 = x2
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For basis vector ~a0, we compute

d
(
−x3 + 2x2 + 2x+ 1

)
= −3x2 + 4x+ 2

= x0~e0 + x1~e1 + x2~e2

= 2~e0 + 4~e1 − 3~e2 =

 2
4
−3


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 2
4
−3


For basis vector ~a1, we compute

d
(
x3 + x2 − 2

)
= 3x2 + 2x

= x0~e0 + x1~e1 + x2~e2

= 0~e0 + 2~e1 + 3~e2 =

 0
2
3


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 0
2
3


For basis vector ~a2, we compute

d
(
x3 + 3x2 + 3x+ 2

)
= 3x2 + 6x+ 3

= x0~e0 + x1~e1 + x2~e2

= 3~e0 + 6~e1 + 3~e2 =

 3
6
3


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 3
6
3


For basis vector ~a3, we compute

d
(
x3 + x2 + x+ 1

)
= 3x2 + 2x+ 1

= x0~e0 + x1~e1 + x2~e2

= 1~e0 + 2~e1 + 3~e2 =

 1
2
3


E
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where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 1
2
3


Solution is

RA→E (d) =

 2 0 3 1
4 2 6 2
−3 3 3 3


Bases A→ H

Given P3 = 〈A〉 = 〈~a0,~a1,~a2,~a3〉where

~a0 = −x3 + 2x2 + 2x+ 1

~a1 = x3 + x2 − 2

~a2 = x3 + 3x2 + 3x+ 2

~a3 = x3 + x2 + x+ 1

and P2 = 〈H〉 =
〈
~h0,~h1,~h2

〉
where

~h0 = 3x2 + 2x+ 4
~h1 = x2 + 2x+ 3
~h2 = x+ 1

For basis vector ~a0, we compute

d
(
−x3 + 2x2 + 2x+ 1

)
= −3x2 + 4x+ 2

= x0~h0 + x1~h1 + x2~h2

= −1~h0 + 0~h1 + 6~h2 =

 −1
0
6


H

where the coordinates are obtained by solving 4 3 1
2 2 1
3 1 0

 x0
x1
x2

 =

 2
4
−3


For basis vector ~a1, we compute

d
(
x3 + x2 − 2

)
= 3x2 + 2x

= x0~h0 + x1~h1 + x2~h2

= 5~h0 − 12~h1 + 16~h2 =

 5
−12

16


H
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where the coordinates are obtained by solving 4 3 1
2 2 1
3 1 0

 x0
x1
x2

 =

 0
2
3


For basis vector ~a2, we compute

d
(
x3 + 3x2 + 3x+ 2

)
= 3x2 + 6x+ 3

= x0~h0 + x1~h1 + x2~h2

= 6~h0 − 15~h1 + 24~h2 =

 6
−15

24


H

where the coordinates are obtained by solving 4 3 1
2 2 1
3 1 0

 x0
x1
x2

 =

 3
6
3


For basis vector ~a3, we compute

d
(
x3 + x2 + x+ 1

)
= 3x2 + 2x+ 1

= x0~h0 + x1~h1 + x2~h2

= 4~h0 − 9~h1 + 12~h2 =

 4
−9
12


H

where the coordinates are obtained by solving 4 3 1
2 2 1
3 1 0

 x0
x1
x2

 =

 1
2
3


Solution is

RA→H (d) =

 −1 5 6 4
0 −12 −15 −9
6 16 24 12


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Combining it together

Consider now the polynomial and its representation is various basis

~p = p(x) = −x3 + 3x2 + 1

RB (~p) =


1
0
3
−1


B

RA (~p) =


18
3

−25
39


A

For its derivative

~q = d(p(x)) = −3x2 + 6x

RE (d(~p)) =

 0
6
−3


E

RG (d(~p)) =

 0
6
−9


G

RH (d(~p)) =

 3
−12

24


H

Then
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RE (d(~p)) = RB→E(d)RB (~p) →

 0
6
−3


E

=

 0 1 0 0
0 0 2 0
0 0 0 3


B→E


1
0
3
−1


B

RG (d(~p)) = RB→G(d)RB (~p) →

 0
6
−9


G

=

 0 1 0 0
0 −1 2 0
0 0 −2 3


B→G


1
0
3
−1


B

RE (d(~p)) = RA→E(d)RA (~p) →

 0
6
−3


E

=

 2 0 3 1
4 2 6 2
−3 3 3 3


A→E


18
3

−25
39


A

RH (d(~p)) = RA→H(d)RA (~p) →

 3
−12

24


H

=

 −1 5 6 4
0 −12 −15 −9
6 16 24 12


A→H


18
3

−25
39


A

3.7.2 M2×2 → P2

Problem: Let φ : M2×2 → P2 be defined as

φ

((
u0 u1
u2 u3

))
= −(3u0 − 6u1 − u2 + 3u3)x2 − (u0 − 2u1 − u2 + u3)x− u2

Given M2×2 = 〈B〉

~b0 =

(
0 1
2 0

)
~b1 =

(
−1 1

2 0

)
~b2 =

(
0 −3
−6 −1

)
~b3 =

(
0 0
1 0

)
Given P2 = 〈D〉

~d0 = −2x2 + 1
~d1 = 2x2 − x− 1
~d2 = −x2 + 1
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Find the matrix representation of φ from basis B to basis D i.e.,

RB→D(φ)

Solution: For basis vector~b0, we compute

φ

((
0 1
2 0

))
= 8x2 + 4x− 2

= x0 ~d0 + x1~d1 + x2 ~d2

= −10~d0 − 4~d1 + 4~d2 =

 −10
−4

4


D

where the coordinates are obtained by solving 1 −1 1
0 −1 0
−2 2 −1

 x0
x1
x2

 =

 −2
4
8


For basis vector~b1, we compute

φ

((
−1 1

2 0

))
= 11x2 + 5x− 2

= x0~d0 + x1 ~d1 + x2~d2

= −14~d0 − 5~d1 + 7~d2 =

 −14
−5

7


D

where the coordinates are obtained by solving 1 −1 1
0 −1 0
−2 2 −1

 x0
x1
x2

 =

 −2
5

11


For basis vector~b2, we compute

φ

((
0 −3
−6 −1

))
= −21x2 − 11x+ 6

= x0 ~d0 + x1~d1 + x2 ~d2

= 26~d0 + 11~d1 − 9~d2 =

 26
11
−9


D

where the coordinates are obtained by solving 1 −1 1
0 −1 0
−2 2 −1

 x0
x1
x2

 =

 6
−11
−21


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For basis vector~b3, we compute

φ

((
0 0
1 0

))
= x2 + x− 1

= x0~d0 + x1 ~d1 + x2~d2

= −1~d0 − 1~d1 − 1~d2 =

 −1
−1
−1


D

where the coordinates are obtained by solving 1 −1 1
0 −1 0
−2 2 −1

 x0
x1
x2

 =

 −1
1
1


Combining together the representation is

RB→D(φ) =

 −10 −14 26 −1
−4 −5 11 −1

4 7 −9 −1


3.7.3 P2 → D2

Problem: Consider φ(·) : P2 → D2 with domain polynomials of degree at
most two P2 and range 2× 2 diagonal matrices D2 defined as:

φ
(
u2x

2 + u1x+ u0
)

=

(
u0 − 3u2 0

0 −u1

)
For basis B

~b0 = 3x2 + x
~b1 = −8x2 − 3x
~b2 = 1

and basis D
~d0 =

(
−1 0

0 0

)
, ~d1 =

(
2 0
0 −1

)
Find the matrix representation of φ from basis B to basis D i.e.,

RB→D(φ)
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Solution: For basis vector ~a0, we compute

φ
(
3x2 + x

)
=

(
−9 0

0 −1

)
= x0~d0 + x1 ~d1

= 11~d0 + 1~d1 =

(
11
1

)
D

where the coordinates are obtained by solving(
−1 2

0 −1

)(
x0
x1

)
=

(
−9
−1

)
For basis vector ~a1, we compute

φ
(
−8x2 − 3x

)
=

(
24 0
0 3

)
= x0 ~d0 + x1~d1

= −30~d0 − 3~d1 =

(
−30
−3

)
D

where the coordinates are obtained by solving(
−1 2

0 −1

)(
x0
x1

)
=

(
24
3

)
For basis vector ~a2, we compute

φ (1) =

(
1 0
0 0

)
= x0 ~d0 + x1 ~d1

= −1~d0 + 0~d1 =

(
−1

0

)
D

where the coordinates are obtained by solving(
−1 2

0 −1

)(
x0
x1

)
=

(
1
0

)
Solution is

RB→D(φ) =

(
11 −30 −1
1 −3 0

)

3.7.4 M2×3 →M2×3

The following function is a variant of the linear map from §3.2.5

φ :M2×3 →M2×3
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defined as

φ

 u0 u1
u2 u3
u4 u5

 =

 u0 + u2 + u5 u1 − 2u3
u0 − 3u1 + 2u3 2u1 + u5
u1 + u2 − 2u3 2u1 − 4u3


Problem: for basis B

~b0 =

 1 0
0 0
0 0


~b1 =

 0 1
0 0
0 0


~b2 =

 0 0
1 0
0 0


~b3 =

 0 0
0 1
0 0


~b4 =

 0 0
0 0
1 0


~b5 =

 0 0
0 0
0 1


find the matrix representation of φ from basis B to the same basis B.

Solution: For basis vector~b0, we compute

φ

 1 0
0 0
0 0

 =

 1 0
1 0
0 0


= x0~b0 + x1~b1 + x2~b2 + x3~b3 + x4~b4 + x5~b5

= 1~b0 + 0~b1 + 1~b2 + 0~b3 + 0~b4 + 0~b5 =


1
0
1
0
0
0


B
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where the coordinates are obtained by solving
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




x0
x1
x2
x3
x4
x5

 =


1
0
1
0
0
0


For basis vector~b1, we compute

φ

 0 1
0 0
0 0

 =

 0 1
−3 2

1 2


= x0~b0 + x1~b1 + x2~b2 + x3~b3 + x4~b4 + x5~b5

= 0~b0 + 1~b1 − 3~b2 + 2~b3 + 1~b4 + 2~b5 =


0
1
−3

2
1
2


B

where the coordinates are obtained by solving
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




x0
x1
x2
x3
x4
x5

 =


0
1
−3

2
1
2


For basis vector~b2, we compute

φ

 0 0
1 0
0 0

 =

 1 0
0 0
1 0


= x0~b0 + x1~b1 + x2~b2 + x3~b3 + x4~b4 + x5~b5

= 1~b0 + 0~b1 + 0~b2 + 0~b3 + 1~b4 + 0~b5 =


1
0
0
0
1
0


B
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where the coordinates are obtained by solving
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




x0
x1
x2
x3
x4
x5

 =


1
0
0
0
1
0


For basis vector~b3, we compute

φ

 0 0
0 1
0 0

 =

 0 −2
2 0
−2 −4


= x0~b0 + x1~b1 + x2~b2 + x3~b3 + x4~b4 + x5~b5

= 0~b0 − 2~b1 + 2~b2 + 0~b3 − 2~b4 − 4~b5 =


0
−2

2
0
−2
−4


B

where the coordinates are obtained by solving
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




x0
x1
x2
x3
x4
x5

 =


0
−2

2
0
−2
−4


For basis vector~b4, we compute

φ

 0 0
0 0
1 0

 =

 0 0
0 0
0 0


= x0~b0 + x1~b1 + x2~b2 + x3~b3 + x4~b4 + x5~b5

= 0~b0 + 0~b1 + 0~b2 + 0~b3 + 0~b4 + 0~b5 =


0
0
0
0
0
0


B
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where the coordinates are obtained by solving
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




x0
x1
x2
x3
x4
x5

 =


0
0
0
0
0
0


For basis vector~b5, we compute

φ

 0 0
0 0
0 1

 =

 1 0
0 1
0 0


= x0~d0 + x1 ~d1 + x2~d2 + x3 ~d3 + x4~d4 + x5 ~d5

= 1~d0 + 0~d1 + 0~d2 + 1~d3 + 0~d4 + 0~d5 =


1
0
0
1
0
0


B

where the coordinates are obtained by solving
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




x0
x1
x2
x3
x4
x5

 =


1
0
0
1
0
0


Solution is

RB→B(φ) =


1 0 1 0 0 1
0 1 0 −2 0 0
1 −3 0 2 0 0
0 2 0 0 0 1
0 1 1 −2 0 0
0 2 0 −4 0 0


3.8 Change of basis

Definition 51. The change of basis matrix for basesB,A ⊂ V is the representation
of the identity map id : V→ V with respect to those bases.

RB→A(φ) =

 | | |
RA(~b1) RA(~b2) . . . RA(~bn)
| | |

 =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
bm,1 bm,2 · · · bm,n


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is the matrix representation of φ with respect to B → A.

3.8.1 P3 → P3

Using P3 basis from Section 3.7.1, given P3 = 〈B〉

~b0 = 1
~b1 = x
~b2 = x2

~b3 = x3

and P3 = 〈A〉

~a0 = −x3 + 2x2 + 2x+ 1

~a1 = x3 + x2 − 2

~a2 = x3 + 3x2 + 3x+ 2

~a3 = x3 + x2 + x+ 1

Bases A→ B

For basis vector ~a0, we compute

id
(
−x3 + 2x2 + 2x+ 1

)
= −x3 + 2x2 + 2x+ 1

= x0~b0 + x1~b1 + x2~b2 + x3~b3

= 1~b0 + 2~b1 + 2~b2 − 1~b3 =


1
2
2
−1


B

where the coordinates are obtained by solving
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x0
x1
x2
x3

 =


1
2
2
−1


For basis vector ~a1, we compute

id
(
x3 + x2 − 2

)
= x3 + x2 − 2

= x0~b0 + x1~b1 + x2~b2 + x3~b3

= −2~b0 + 0~b1 + 1~b2 + 1~b3 =


−2

0
1
1


B
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where the coordinates are obtained by solving
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x0
x1
x2
x3

 =


−2

0
1
1


For basis vector ~a2, we compute

id
(
x3 + 3x2 + 3x+ 2

)
= x3 + 3x2 + 3x+ 2

= x0~b0 + x1~b1 + x2~b2 + x3~b3

= 2~b0 + 3~b1 + 3~b2 + 1~b3 =


2
3
3
1


B

where the coordinates are obtained by solving
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x0
x1
x2
x3

 =


2
3
3
1


For basis vector ~a3, we compute

id
(
x3 + x2 + x+ 1

)
= x3 + x2 + x+ 1

= x0~b0 + x1~b1 + x2~b2 + x3~b3

= 1~b0 + 1~b1 + 1~b2 + 1~b3 =


1
1
1
1


B

where the coordinates are obtained by solving
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x0
x1
x2
x3

 =


1
1
1
1


Solution is

RA→B =


1 −2 2 1
2 0 3 1
2 1 3 1
−1 1 1 1


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Bases B → A

For basis vector~b0, we compute

id (1) = 1

= x0~a0 + x1~a1 + x2~a2 + x3~a3

= 2~a0 + 0~a1 − 3~a2 + 5~a3 =


2
0
−3

5


A

where the coordinates are obtained by solving
1 −2 2 1
2 0 3 1
2 1 3 1
−1 1 1 1




x0
x1
x2
x3

 =


1
0
0
0


For basis vector~b1, we compute

id (x) = x

= x0~a0 + x1~a1 + x2~a2 + x3~a3

= −6~a0 − 1~a1 + 9~a2 − 14~a3 =


−6
−1

9
−14


A

where the coordinates are obtained by solving
1 −2 2 1
2 0 3 1
2 1 3 1
−1 1 1 1




x0
x1
x2
x3

 =


0
1
0
0


For basis vector~b2, we compute

id
(
x2
)

= x2

= x0~a0 + x1~a1 + x2~a2 + x3~a3

= 5~a0 + 1~a1 − 7~a2 + 11~a3 =


5
1
−7
11


A

where the coordinates are obtained by solving
1 −2 2 1
2 0 3 1
2 1 3 1
−1 1 1 1




x0
x1
x2
x3

 =


0
0
1
0


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For basis vector~b3, we compute

id
(
x3
)

= x3

= x0~a0 + x1~a1 + x2~a2 + x3~a3

= −1~a0 + 0~a1 + 1~a2 − 1~a3 =


−1

0
1
−1


A

where the coordinates are obtained by solving
1 −2 2 1
2 0 3 1
2 1 3 1
−1 1 1 1




x0
x1
x2
x3

 =


0
0
0
1


Solution is

RB→A =


2 −6 5 −1
0 −1 1 0
−3 9 −7 1

5 −14 11 −1


Important observation

RB→ARA→B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


3.8.2 P2 → P2

Using P2 basis from Section 3.7.1, given P2 = 〈E〉

~e0 = 1

~e1 = x

~e2 = x2

and P2 = 〈G〉

~g0 = x2 + x+ 1

~g1 = x2 + x

~g2 = x2
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and P2 = 〈H〉

~h0 = 3x2 + 2x+ 4
~h1 = x2 + 2x+ 3
~h2 = x+ 1

Bases E → G

For basis vector ~e0, we compute

id (1) = 1

= x0~g0 + x1~g1 + x2~g2

= 1~g0 − 1~g1 + 0~g2 =

 1
−1

0


G

where the coordinates are obtained by solving 1 0 0
1 1 0
1 1 1

 x0
x1
x2

 =

 1
0
0


For basis vector ~e1, we compute

id (x) = x

= x0~g0 + x1~g1 + x2~g2

= 0~g0 + 1~g1 − 1~g2 =

 0
1
−1


G

where the coordinates are obtained by solving 1 0 0
1 1 0
1 1 1

 x0
x1
x2

 =

 0
1
0


For basis vector ~e2, we compute

id
(
x2
)

= x2

= x0~g0 + x1~g1 + x2~g2

= 0~g0 + 0~g1 + 1~g2 =

 0
0
1


G
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where the coordinates are obtained by solving 1 0 0
1 1 0
1 1 1

 x0
x1
x2

 =

 0
0
1


Solution is

RE→G =

 1 0 0
−1 1 0

0 −1 1


Bases G→ E

For basis vector ~g0, we compute

id
(
x2 + x+ 1

)
= x2 + x+ 1

= x0~e0 + x1~e1 + x2~e2

= 1~e0 + 1~e1 + 1~e2 =

 1
1
1


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 1
1
1


For basis vector ~g1, we compute

id
(
x2 + x

)
= x2 + x

= x0~e0 + x1~e1 + x2~e2

= 0~e0 + 1~e1 + 1~e2 =

 0
1
1


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 0
1
1


For basis vector ~g2, we compute

id
(
x2
)

= x2

= x0~e0 + x1~e1 + x2~e2

= 0~e0 + 0~e1 + 1~e2 =

 0
0
1


E
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where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 0
0
1


Solution is

RG→E =

 1 0 0
1 1 0
1 1 1


Note that the systems of linear equations are trivial to solve so getting the

matrix representation G→ E is trivial. We still have

RG→ERE→G = I

Bases H → E

For basis vector ~h0, we compute

id
(
3x2 + 2x+ 4

)
= 3x2 + 2x+ 4

= x0~e0 + x1~e1 + x2~e2

= 4~e0 + 2~e1 + 3~e2 =

 4
2
3


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 4
2
3


For basis vector ~h1, we compute

id
(
x2 + 2x+ 3

)
= x2 + 2x+ 3

= x0~e0 + x1~e1 + x2~e2

= 3~e0 + 2~e1 + 1~e2 =

 3
2
1


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 3
2
1


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For basis vector ~h2, we compute

id (x+ 1) = x+ 1

= x0~e0 + x1~e1 + x2~e2

= 1~e0 + 1~e1 + 0~e2 =

 1
1
0


E

where the coordinates are obtained by solving 1 0 0
0 1 0
0 0 1

 x0
x1
x2

 =

 1
1
0


Solution is

RH→E =

 4 3 1
2 2 1
3 1 0


Bases E → H

Given the previous observation

RG→ERE→G = I

to compute
RE→H

we simply need to find the inverse of matrix

RH→E =

 4 3 1
2 2 1
3 1 0


which is

RE→H =

 −1 1 1
3 −3 −2
−4 5 2


Alternatively we can go the “long way”: for basis vector ~e0, we compute

id (1) = 1

= x0~e0 + x1~e1 + x2~e2

= −1~e0 + 3~e1 − 4~e2 =

 −1
3
−4


E

where the coordinates are obtained by solving 4 3 1
2 2 1
3 1 0

 x0
x1
x2

 =

 1
0
0


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For basis vector ~e1, we compute

id (x) = x

= x0~e0 + x1~e1 + x2~e2

= 1~e0 − 3~e1 + 5~e2 =

 1
−3

5


E

where the coordinates are obtained by solving 4 3 1
2 2 1
3 1 0

 x0
x1
x2

 =

 0
1
0


For basis vector ~e2, we compute

id
(
x2
)

= x2

= x0~e0 + x1~e1 + x2~e2

= 1~e0 − 2~e1 + 2~e2 =

 1
−2

2


E

where the coordinates are obtained by solving 4 3 1
2 2 1
3 1 0

 x0
x1
x2

 =

 0
0
1


Solution is

RE→H =

 −1 1 1
3 −3 −2
−4 5 2


Bases H → G

At this stage we will not go the long way. We already knowRH→E andRE→G.
Naturally

RH→G = RE→GRH→E

=

 1 0 0
−1 1 0

0 −1 1

 4 3 1
2 2 1
3 1 0

 =

 4 3 1
−2 −1 0

1 −1 −1


Bases G→ H

As in the previous section we either compute

RG→H = RE→HRG→E
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which we already have computed or we fine the inverse of

RH→G

in either case we get

RG→H =

 1 2 1
−2 −5 −2

3 7 2


3.8.3 Invertible matrices

In the above examples if we want the matrix of the identity transformation
RC→R we solve a system of linear equation A~x = b. If we want to get RR→C
then we solve a system of linear equations that is B~x = c and their relation is
thatAB = I . For any invertible matrixAwe can do that. And anytime we have
a change of basis matrix its columns (and rows) must be linearly independent
so the matrix is invertible. This is the underlying statement of the following

Theorem 50. A matrix changes basis if and only if it is non-singular.

3.8.4 Matrix multiplication

The above Theorem 50 is for change of basis but if we combine change of ba-
sis with matrix representation of linear transformations we get the following
picture:

VB → φB→D → WD

↓ ↓
idB→E idD→C
↓ ↓

VE → φE→C → WC

For example for the derivative map from Section 3.7.1 we know

RB→E ,RB→G,RA→E ,RA→H

from Section 3.8.1 we know

RA→B ,RB→A

from Section 3.8.2 we know

RE→G,RG→E ,RE→H ,RH→E ,RH→G,RG→H

Suppose we did not knowRA→H but we knew

• RB→E (very easy)

• RA→B (very easy)
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• RE→H some computations

then to computeRA→H we need to use

RA→H = RE→HRB→ERA→B

which is just multiplication of matrices. So what isRA→G? We use

RA→G = RE→GRB→ERA→B

=

 2 0 3 1
2 2 3 1
−7 1 −3 1


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Chapter 4

Determinant

4.1 Definitions and properties

Definition 52. A n× n-determinant is a function

det :Mn×n → K

such that
det(EA) = det(E) det(A)

for an elementary row operation matrix E and any matrix A, with E,A ∈ Mn×n.
Furthermore

1. det(E) = 1 if E is linear combination;

2. det(E) = −1 if E is a swap;

3. det(E) = k if E is rescaling;

4. det(I) = 1 for the identity matrix of order n.

We often write |A| for det(A). Let the vectors ~ρ represent the rows of the
matrix. The conditions then are written as:
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Row combination det



~ρ1
...

~ρi−1
~ρi
~ρi+1

...
~ρn


= det



~ρ1
...
~ρi

~ρj + k~ρj
~ρi
...
~ρn


for i 6= j

det





1 0 . . . . . . 0 0
. . .

0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 . . . 0 k 0 . . . 0 1 0 . . . 0 0
0 . . . 0 0 0 . . . 0 0 1 . . . 0 0

. . .
0 0 . . . . . . 0 1





~ρ1
...

~ρi−1
~ρi
~ρi+1

...
~ρn




= det



~ρ1
...
~ρi

~ρj + k~ρj
~ρi
...
~ρn


For example:

det

 5 −8 1
0 − 1

5
2
5

−4 7 −1

 = det

 1 0 0
− 3

5 1 0
0 0 1

 5 −8 1
3 −5 1
−4 7 −1


= det

 1 0 0
− 3

5 1 0
0 0 1


︸ ︷︷ ︸

=1

det

 5 −8 1
3 −5 1
−4 7 −1



= 1 det

 5 −8 1
3 −5 1
−4 7 −1


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Swap det



~ρ1
...
~ρi
...
~ρj
...
~ρn


= − det



~ρ1
...
~ρj
...
~ρi
...
~ρn


for i 6= j

det





1 0 . . . . . . 0 0
. . .

0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 . . . 0 0 0 . . . 0 0 1 . . . 0 0

. . .
0 0 . . . 1 0 0 . . . 0 0 0 . . .
0 0 . . . 0 0 0 . . . 0 1 0 . . .
0 0 . . . 0 0 1 . . . 0 0 0 . . .

. . .
0 0 . . . . . . 0 1





~ρ1
...

~ρi−1
~ρi
~ρi+1

...
~ρj−1
~ρj
~ρj+1

...
~ρn





= − det



~ρ1
...

~ρi−1
~ρj
~ρi+1

...
~ρj−1
~ρi
~ρj+1

...
~ρn


For example:

det

 3 −5 1
5 −8 1
−4 7 −1

 = det

 0 1 0
1 0 0
0 0 1

 5 −8 1
3 −5 1
−4 7 −1


= det

 0 1 0
1 0 0
0 0 1


︸ ︷︷ ︸

=−1

det

 5 −8 1
3 −5 1
−4 7 −1



= −1 det

 5 −8 1
3 −5 1
−4 7 −1


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Rescaling det



~ρ1
...
k~ρi

...
~ρn

 = k det



~ρ1
...
~ρi
...
~ρn

 for any scalar k

det





1 0 . . . . . . 0 0
. . .

...
0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 k 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0

...
. . .

0 0 . . . . . . 0 1





~ρ1
...

~ρi−1
~ρi
~ρi+1

...
~ρn




= det



~ρ1
...

~ρi−1
k~ρi
~ρi+1

...
~ρn


For example:

det

 5 −8 1
−15 25 −5
−4 7 −1

 = det

 1 0 0
0 −5 0
0 0 1

 5 −8 1
3 −5 1
−4 7 −1


= det

 1 0 0
0 −5 0
0 0 1


︸ ︷︷ ︸

=−5

det

 5 −8 1
3 −5 1
−4 7 −1



= −5 det

 5 −8 1
3 −5 1
−4 7 −1


Theorem 51. Condition 1 and Condition 3 imply Condition 2.

Proof.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~ρ1
...

~ρi−1
~ρi
~ρi+1

...
~ρj−1
~ρj
~ρj+1

...
~ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~ρ1
...

~ρi−1
~ρi + ~ρj
~ρi+1

...
~ρj−1
~ρj
~ρj+1

...
~ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~ρ1
...

~ρi−1
~ρi + ~ρj
~ρi+1

...
~ρj−1

~ρj − ~ρi − ~ρj
~ρj+1

...
~ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~ρ1
...

~ρi−1
~ρi + ~ρj
~ρi+1

...
~ρj−1
−~ρi
~ρj+1

...
~ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~ρ1
...

~ρi−1
~ρi + ~ρj − ~ρi

~ρi+1

...
~ρj−1
−~ρi
~ρj+1

...
~ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~ρ1
...

~ρi−1
~ρj
~ρi+1

...
~ρj−1
−~ρi
~ρj+1

...
~ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~ρ1
...

~ρi−1
~ρj
~ρi+1

...
~ρj−1
~ρi
~ρj+1

...
~ρn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Swap (as a matrix) equals the product of linear combinations and rescaling.
For example:

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


So if we apply the above matrix equality to determinants we get

det


−2 −6 −6 3

0 −5 0 −2
0 −1 −1 0
−2 0 −5 1

 = det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


︸ ︷︷ ︸

=−1

det


−2 −6 −6 3

0 −5 0 −2
0 −1 −1 0
2 0 5 −1



= (−1) det


−2 −6 −6 3

0 −5 0 −2
0 −1 −1 0
2 0 5 −1

 = (−1) det


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

=1

det


−2 −6 −6 3
−2 −5 −5 −1

0 −1 −1 0
2 0 5 −1



= (−1) det


−2 −6 −6 3
−2 −5 −5 −1

0 −1 −1 0
2 0 5 −1

 = (−1) det


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1


︸ ︷︷ ︸

=1

det


−2 −6 −6 3
−2 −5 −5 −1

0 −1 −1 0
0 −5 0 −2



= (−1) det


−2 −6 −6 3
−2 −5 −5 −1

0 −1 −1 0
2 0 5 −1

 = (−1) det


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

=1

det


−2 −6 −6 3
−2 0 −5 1

0 −1 −1 0
0 −5 0 −2



= (−1) det


−2 −6 −6 3
−2 0 −5 1

0 −1 −1 0
0 −5 0 −2



= det


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 det


−2 −6 −6 3
−2 0 −5 1

0 −1 −1 0
0 −5 0 −2


Theorem 52. If a matrix A has a row of zeros then det(A) = 0.

Proof. Use scalar multiplication property with k = 0.

Theorem 53. det(A) = 0 if and only if ~ρ1, . . . , ~ρn are linearly dependent.
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Proof. Suppose that ~ρ1, . . . , ~ρn are linearly dependent. Then there exist coeffi-
cients not all zero such that

α1~ρ1 + · · ·+ αn~ρn = ~0

let αk 6= 0. Then

αk det



~ρ1
...
~ρk
...
~ρn

 = det



~ρ1
...

αk~ρk
...
~ρn

 = det



~ρ1
...

αk~ρk +
∑n
i=1,i6=k αi~ρi
...
~ρn

 = det



~ρ1
...
~0
...
~ρn

 = 0

Since αk 6= 0 it follows that the determinant is zero.
Assume now the rows are linearly independent (and so are the columns).

By Theorem 6 using the matrix representation of Gaussian operations we can
write A−1 = Em . . . E1 where each Ei is an elemetary matrix and all scaling
operations do not involve a scaling by zero. Then

1 = det(I) = det(A−1A) = det(Em . . . E1A) = det(Em) . . . det(E1) det(A)

since the right hand side is non-zero the left hand side is also non zero; and
therefore det(A) 6= 0.

On the one hande if we have an invertible matrix (i.e., rows are linearly
independent) the matrix is a product of elementary matrices with no scaling
by zero for example: 0 1 −3

0 0 1
1 −2 5

 =

 1 0 0
0 1 0
0 5 1

 1 −3 0
0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0


←↩

↪→

 1 0 0
−2 1 0

0 0 1

 0 1 0
1 0 0
0 0 1


If we apply the determinant definition on the right hand side each determinant
is either one, negative one or a scaling factor k that is different from zero. Thus
we have a product of non-zero values and the result is non-zero determinant.

On the other hand if we have linearly dependent rows, by performing lin-
ear combinations we can get a row of zeros thus the determinant is zero for
example: 2 1 −1

1 −2 3
3 4 −5

 =

 1 0 0
0 1 0
2 0 1

 1 0 0
0 1 0
0 −1 1

 2 1 −1
1 −2 3
0 0 0


On the right hand side there a matrix with rows of zeroes so its determinant is
zero so the determinant of the matrix on the left side must be zero.
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Theorem 54. det(A) is unique.

Proof. If columns of A are linear dependent then det(A) = 0 = d̃et(A). If
colums of A are linearly independent then from

d̃et(A) = d̃et(Em . . . E1)

= d̃et(Em) . . . d̃et(E1)

= det(Em) . . . det(E1)

= det(Em . . . E1)

= det(A)

Theorem 55. det(AB) = det(A) det(B)

Proof. If det(B) = 0 then its rows (and by the rank) its rows are linearly depen-
dent. In C = AB the rows of C are linear combinations of the rows of B. Then
the span of the rows of C is a subset of the span of the rows of B and there-
fore the number of linearly independent rows of C cannot exceed the number
of linearly independent rows of B. Thus the rows of C cannot be linearly in-
dependent. Thus det(C) = 0 and the theorem holds in this case. Similarly if
det(A) = 0 then the columns of A are linearly dependent and by a similar ar-
gument det(C) = 0. Assume now that det(A) 6= 0 and det(B) 6= 0. Then as in
the above theorem we have

det(A) = det(Em) . . . det(E1)

det(B) = det(E′k) . . . det(E′1)

and

det(AB) = det(Em . . . E1E
′
k . . . E

′
1) = det(Em) . . . det(E1) det(E′k) . . . det(E′1) = det(A) det(B)

Note that in the above we do not use the fact that det(AB) = det(AB) we
simply use the definition where det(EA) = det(E) det(A) for any elementary
matrix E.

Recall that by Theorem 6 we have that

Suppose the rows (columns) of square A are linearly independent
then A can be written as a product of elementary matrices.

Theorem 56. det(A) = det(AT )

Proof. If A is an elementary matrix then the result follows as:

1. Rescaling: if E is a rescaling matrix then ET = E and therefore det(E) =
det(ET );

2. Swap: ifE is a swap matrix thenET = E and therefore det(E) = det(ET );
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3. row combination: if E is a matrix where k times row i is added to row
j then ET is the matrix k times row j is added to row i and therefore
det(ET ) = 1 where and therefore det(E) = det(ET ); with details if

E =



~ρ1
...

~ρi−1
~ρj + k~ρj
~ρi+1

...
~ρn


then ET =



~ρ1
...
~ρj

~ρj + k~ρi
~ρj
...
~ρn


for i 6= j. Alternative write-up: if

E =



1 0 . . . . . . 0 0
0 1

. . .
0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 k 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0

. . .
0 0 . . . . . . 0 1


then

ET =



1 0 . . . . . . 0 0
0 1

. . .
0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 k 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0

. . .
0 0 . . . . . . 0 1


for i 6= j.
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Now if A has linearly dependent rows it has linearly dependend columns
by Theorem 21 its rows are also linearly dependent. Then the columns of AT

are linearly dependent and det(AT ) = 0 = det(A). Suppose now A has lin-
early independent rows and by Theorem 6 A can be represented as product of
elementary matrices. Say

A = E1E2 . . . Es

then
AT = ETs E

T
s−1 . . . E

T
2 E

T
1 .

Hence by Theorem 55 we have

det(AT ) = det(ETs ) det(ETs−1) . . . det(ET2 ) det(ET1 )

= det(Es) det(Es−1) . . . det(E2) det(E1)

= det(E1) det(E2) . . . det(Es−1) det(Es)

= det(E1E2 . . . Es−1Es) = det(A)

Which concludes the argument.

4.2 Towards existence

In the previous section we established that if there is determinant function then
this function is unique. But does it exists? Consider the (invertible) matrix 0 1 −3

0 0 1
1 −2 5


it can be written as a product of elementary matrices as: 0 1 −3

0 0 1
1 −2 5

 =

 1 0 0
0 1 0
0 5 1

 1 −3 0
0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0


←↩

↪→

 1 0 0
−2 1 0

0 0 1

 0 1 0
1 0 0
0 0 1


as well as 0 1 −3

0 0 1
1 −2 5

 =

 1 0 0
0 1 3
0 0 1

 1 0 1
0 1 0
0 0 1

 1 2 0
0 1 0
0 0 1


←↩

↪→

 1 0 0
0 0 1
0 1 0

 0 0 1
0 1 0
1 0 0


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Existence question relates to how do we know that from A = Em . . . E1 and
A = E′k . . . E

′
1 that

det(Em) . . . det(E1) = det(E′k) . . . det(E′1).

May be the product on the left and the right are not equal. Another example
for the matrix 

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0


how many swaps do we need to get the identity matrix? May be we can do it
with 8 swaps and at the same time we can do it with 5 swaps. In one case we
have determinant positive one and in the other negative one.

Theorem 57. det



~ρ1
...

~ρi−1
~u+ ~v
~ρi+1

...
~ρn


= det



~ρ1
...

~ρi−1
~u
~ρi+1

...
~ρn


+ det



~ρ1
...

~ρi−1
~v
~ρi+1

...
~ρn


Proof. If ~ρ1, . . . , ~ρi−1, ~ρi+1, . . . , ~ρn are linearly dependent then all determinants
are zero and the result follows. Suppose now they are linearly independent.
Then we can find a vector ~β such that ~ρ1, . . . , ~ρi−1, ~β, ~ρi+1, . . . , ~ρn are linearly
independent. Since there are n of them they span all of Kn and therefore

~u = u1~ρ1 + · · ·+ ui−1~ρi−1 + ui~β + ui+1~ρi+1 + · · ·+ un~ρn

~v = v1~ρ1 + · · ·+ vi−1~ρi−1 + vi~β + vi+1~ρi+1 + · · ·+ vn~ρn

~u+ ~v = (u1 + v1)~ρ1 + · · ·+ (ui−1 + vi−1)~ρi−1

+(ui + vi)~β + (ui+1 + vi+1)~ρi+1 + · · ·+ (un + vn)~ρn

Then for j = 1 . . . i− 1 and j = i+ 1, . . . n we have

det



~ρ1
...

~ρi−1
~u+ ~v = ~w0

~ρi+1

...
~ρn


= det



~ρ1
...

~ρi−1
~wj−1 − (uj + vj)~ρj

~ρi+1

...
~ρn


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At the end we obtain

det



~ρ1
...

~ρi−1
~u+ ~v
~ρi+1

...
~ρn


= det



~ρ1
...

~ρi−1
(ui + vi)~β
~ρi+1

...
~ρn


= (ui + vi) det



~ρ1
...

~ρi−1
~β

~ρi+1

...
~ρn



= ui det



~ρ1
...

~ρi−1
~β

~ρi+1

...
~ρn


+ vi det



~ρ1
...

~ρi−1
~β

~ρi+1

...
~ρn


Consider

ui det



~ρ1
...

~ρi−1
~β

~ρi+1

...
~ρn


= det



~ρ1
...

~ρi−1
ui~β
~ρi+1

...
~ρn


= det



~ρ1
...

~ρi−1
ui~β + u1~ρ1

~ρi+1

...
~ρn



= det



~ρ1
...

~ρi−1
ui~β + u1~ρ1 + u2~ρ2

~ρi+1

...
~ρn


= · · · = det



~ρ1
...

~ρi−1
~u
~ρi+1

...
~ρn


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Similarly,

vi det



~ρ1
...

~ρi−1
~β

~ρi+1

...
~ρn


= · · · = det



~ρ1
...

~ρi−1
~v
~ρi+1

...
~ρn


And substituting back we get the desired result.

Permutation. A permutation of n is a bijective function with domain and
range the set of numbers 1, . . . , n,

φ : [1, n]→ [1, n].

For example
n 1 2 3 4
φ(n) 2 4 3 1

is a permutation of 4. The permutation is given in table form e.g., φ(2) = 4. The
matrix form of a permutation of n is an n×nmatrix where in row i all elements
are zero except the entry in column φ(i) which is one. For the permutation of 4
given above the matrix is 

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


Example: From(

5 −8 1
)

=
(

5 0 0
)

+
(

0 −8 0
)

+
(

0 0 1
)
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we have the expansion

det

 5 −8 1
3 −5 1
−4 −7 −1

 = det

 5 0 0
3 −5 1
−4 −7 −1

+ det

 0 −8 0
3 −5 1
−4 −7 −1

+ det

 0 0 1
3 −5 1
−4 −7 −1


= det

 5 0 0
3 0 0
−4 −7 −1

+ det

 5 0 0
0 −5 0
−4 −7 −1

+ det

 5 0 0
0 0 1
−4 −7 −1


+ det

 0 −8 0
3 −5 1
−4 −7 −1

+ det

 0 0 1
3 −5 1
−4 −7 −1


= det

 5 0 0
3 0 0
−4 0 0

+ det

 5 0 0
3 0 0
0 −7 0

+ det

 5 0 0
3 0 0
0 0 −1


+ det

 5 0 0
0 −5 0
−4 −7 −1

+ det

 5 0 0
0 0 1
−4 −7 −1


+ det

 0 −8 0
3 −5 1
−4 −7 −1

+ det

 0 0 1
3 −5 1
−4 −7 −1


When we take the same element from the first row we get a matrix where

the first two rows are linearly dependent hence the determinant is zero. So
the only contribution comes from determinants where we take elements from
different columns (and thus keep linearly independence). So we end up with
the formula for the determinant

det(A) =
∑

permutations φ
a1φ(1) . . . anφ(n) det(Pφ) (4.1)

=

n∑
i=1

(−1)
i+c

aic det (A(i|c)) (4.2)

=

n∑
i=1

(−1)
r+i

ari det (A(r|i)) (4.3)

Here A(i|j) is a submatrix obtained from A by removing row i and column j.
The value det(A(i|j) is called the minor of aij , and the value (−1)

k+i
det (A(i|k))

is called the cofactor of aij . Equation 4.2 (column expansion) and Equation 4.3
(row expansion) can be obtained from Equation 4.1 via tedious manipulations.

Remark. While determinant function has domain the set of square n× n ma-
trices, when talking about A(i|j) in general A need not be a square matrix. The
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notation A(i|j) is often used for any m× n matrix. Cofactors are defined via a
determinant therefore cofactors are defined only for square matrices.

Example: Column expansion by first column

det

 5 −8 1
3 −5 1
−4 7 −1

 = (5) (−1)
1+1

det

(
−5 1

7 −1

)

+ (3) (−1)
2+1

det

(
−8 1

7 −1

)

+ (−4) (−1)
3+1

det

(
−8 1
−5 1

)
= (5) (−1)

1+1
(−2)

+ (3) (−1)
2+1

(1)

+ (−4) (−1)
3+1

(−3)

= −1

Observe that repeatedly applying columns expansion by first column im-
plies that the determinant of a triangular matrix is the product of diagonal
entries.

Example: Row expansion by second row

det

 5 −8 1
3 −5 1
−4 7 −1

 = (3) (−1)
2+1

det

(
−8 1

7 −1

)

+ (−5) (−1)
2+2

det

(
5 1
−4 −1

)

+ (1) (−1)
2+3

det

(
5 −8
−4 7

)
= (3) (−1)

2+1
(1)

+ (−5) (−1)
2+2

(−1)

+ (1) (−1)
2+3

(3)

= −1
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4.3 Determinant of a permutation

From Equation 4.1 to show that determinant is well defined function we need
to show it is well defined for permutations. These are matrices that have ex-
actly one entry one in each column and row and all other entries are zero.

Definition 53. φ = (φ(1), φ(2), . . . , φ(n)). In a permutation matrixPφ =



...
ρφ(k)

...
ρφ(l)

...


two rows k and l with k < l are an inversion if and only if φ(k) > φ(l).

Example: the permutation

n 1 2 3 4
φ(n) 2 4 3 1

has four inversions: φ(1) > φ(4), φ(2) > φ(3), φ(2) > φ(4) and φ(3) > φ(4).

Theorem 58. A row swap changes in a permutation matrix changes the total number
of inversions either from even to odd or from odd to even.

Proof. Suppose we swap two rows that are adjacent

...
ρφ(s)

...
ρφ(k)
ρφ(k+1)

...
ρφ(t)

...


↔



...
ρφ(s)

...
ρφ(k+1)

ρφ(k)
...

ρφ(t)
...


Then φ(s)φ(k) is an inversion in the first matrix if and only if it is an inversion in
the second matrix. Similarly φ(s)φ(k+1) is an inversion in the first matrix if and
only if it is an inversion in the second matrix; φ(s+1)φ(k) is an inversion in the
first matrix if and only if it is an inversion in the second matrix; φ(s+1)φ(k+1)
is an inversion in the first matrix if and only if it is an inversion in the second
matrix. However, φ(k)φ(k + 1) is an inversion of the first matrix if and only if
φ(k + 1), φ(k) is not and inversion in the second matrix. Thus a swap of two
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adjacent rows changes the parity of inversions. Consider now



...
ρφ(s)

...
ρφ(k)

...
ρφ(l)

...
ρφ(t)

...



↔



...
ρφ(s)

...
ρφ(k)
ρφ(l)

...
ρφ(l−1)

...
ρφ(t)

...



↔



...
ρφ(s)

...
ρφ(l)
ρφ(k)

...
ρφ(l−1)

...
ρφ(t)

...



↔



...
ρφ(s)

...
ρφ(l)

...
ρφ(l−1)
ρφ(k)

...
ρφ(t)

...



↔



...
ρφ(s)

...
ρφ(l)

...
ρφ(k)

...
ρφ(t)

...


We perform the swaps by moving row l up to row k by performing swaps of
adjacent rows. The number of swap that is required is k − l. Then moving row
k, which is now at position k + 1 to row l, which requires a total of k − 1 − l
swaps. The total number of swaps is then 2k − 2l− 1 which is an odd number.
Thus swapping two rows changes the parity of number of inversions.

Theorem 59. If a permutation has odd number of inversions then swapping to the
identity matrix takes odd number of swaps. If a permutation has even number of swaps
then swapping it to the identity matrix takes even number of swaps.

Proof. Identity has zero number of swaps, hence to change odd number to zero
requires odd swaps and changing even number to zero requires even number
of swaps.

Definition 54. The sign of a permutation is negative one if the number in inversions
is odd, and positive one if the number of inversions is even.

The following functions satisfies the determinant properties:

det(A) =
∑

permutations φ
a1φ(1) . . . anφ(n) det(Pφ)

=
∑

permutations φ
a1φ(1) . . . anφ(n)sign(Pφ)

Indeed Pφ is an invertible matrix and as discussed above it can be written as
product of swaps only. Then Pφ = E1E2 . . . En and applying the determinant
definition we obtain det(Pφ) = det(E1) det(E2) . . . det(En). Since the number
n of swaps is always even or always odd for a fixed permutation matrix, the
product on the right hand side always equals the sign of the permutation com-
pleting the argument.
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Chapter 5

Eigenvalues and Eigenvectors

5.1 Motivation

Matrices are linear transformation. Under a given transformation some things
remain unchanged. An important idea is to find what remains unchanged.
Such information has extensive application from compression to page ranking
to animations. We will next discuss the mathematics behind those ideas.

5.2 Eigenvectors

Definition 55 (eigenvalues and eigenvectors). Let A be a square matrix. A non-
zero vector ~u is an eigenvector for A if A~u = λ~u for some λ. The value λ is called
eigenvalue for the eigenvector ~u.

We also use the term linear transformation instead of a square matrices. In
that case we mean the matrix of the linear transformation from a basis B to the
same basis B.

5.2.1 Examples

Consider (
4 −5
2 −3

)(
−10
−4

)
=

(
−20
−8

)
= 2

(
−10
−4

)
Then

(
−10
−4

)
is eigenvector for

(
4 −5
2 −3

)
with corresponding eigenvalue

2.
Consider −9 14 4

3 0 −2
−18 22 9

 −6
−2
−8

 =

 −6
−2
−8

 = 1

 −6
−2
−8


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Then

 −6
−2
−8

 is eigenvector for

 −9 14 4
3 0 −2

−18 22 9

with corresponding eigen-

value 1.
Consider

−1 0 3 1 5
0 −1 6 2 10
3 −1 −4 −1 −6
−4 3 −3 −2 −7
−1 0 3 1 5




1
2
1
3
−1

 =


0
0
0
0
0

 = 0


1
2
1
3
−1



Then


1
2
1
3
−1

 is eigenvector for


−1 0 3 1 5

0 −1 6 2 10
3 −1 −4 −1 −6
−4 3 −3 −2 −7
−1 0 3 1 5

with correspond-

ing eigenvalue 0.

5.2.2 Remarks

Observe that the problem A~x = λ~x is not linear. For the three by three matrix
above we get  −9 14 4

3 0 −2
−18 22 9

 ~x = λ~x

or written explicitly we get

−9x1 + 14x2 + 4x3 = λx1

3x1 − 2x3 = λx2

−18x1 + 22x2 + 9x3 = λx3

Both ~x and λ are not known.
Furthermore, if we set ~x = ~0 then A~x = λ~x becomes A~0 = λ~0 which is

satisfied for all values λ. Such solution is not that interesting. Similar to linear
dependence and independence we are interested in non-trivial solutions for ~x.
Therefore, the definition requires that ~u is a non-zero vector, but allows for λ to
be zero. That is 0 can be an eigenvalue but ~0 cannot be an eigenvector.

5.3 Existence

The first questions that we need to address is: given an n × n matrix is it true
that such a matrix always will have an eigenvector (and a corresponding eigen-
value).
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5.3.1 Polynomials and matrices

For a n× n matrix M let

M0 = In

M1 = M

M2 = MM

M3 = MMM
...

Mk = M · · ·M︸ ︷︷ ︸
k times

With the above polynomials can be evaluated at matrices. For a polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k

= a0x
0 + a1x

1 + a2x
2 + · · ·+ akx

k

= (x− x0)r0(x− x1)r1 · · · (x− xt)rt

where ∀i, ri ≥ 1, ri ∈ Z and r0 + r1 + · · ·+ rt = k, define

p(M) = a0M
0 + a1M

1 + a2M
2 + · · ·+ akM

k

= (M − x1In)r1(M − x2In)r2 · · · (M − xtIn)rt

Examples

For the matrix M and the corresponding polynomial p(x) verify the evalua-
tions below:

M =

(
4 −5
2 −3

)
p(x) = x2 − 4

= 1

(
6 −5
2 −1

)
+ 0

(
4 −5
2 −3

)
− 4

(
1 0
0 1

)
= (x− 2) · (x+ 2)

=

(
2 −5
2 −5

)
︸ ︷︷ ︸
M−(2)I2

(
6 −5
2 −1

)
︸ ︷︷ ︸
M−(−2)I2

=

(
2 −5
2 −5

)

168



The same polynomial evaluated at a different matrix:

M =

 2 2 3
1 0 1
2 3 4


p(x) = x2 − 4

= 1

 12 13 20
4 5 7

15 16 25

+ 0

 2 2 3
1 0 1
2 3 4

− 4

 1 0 0
0 1 0
0 0 1


= (x− 2) · (x+ 2)

=

 0 2 3
1 −2 1
2 3 2


︸ ︷︷ ︸

M−(2)I3

 4 2 3
1 2 1
2 3 6


︸ ︷︷ ︸

M−(−2)I3

=

 8 13 20
4 1 7

15 16 21


The same matrix evaluated at a different polynomial:

M =

 2 2 3
1 0 1
2 3 4


p(x) = x3 − 13x+ 12

= 1

 77 84 129
27 29 45
96 105 161

+ 0

 12 13 20
4 5 7

15 16 25

− 13

 2 2 3
1 0 1
2 3 4

+ 12

 1 0 0
0 1 0
0 0 1


= (x− 3) · (x− 1) · (x+ 4)

=

 −1 2 3
1 −3 1
2 3 1


︸ ︷︷ ︸

M−(3)I3

 1 2 3
1 −1 1
2 3 3


︸ ︷︷ ︸

M−(1)I3

 6 2 3
1 4 1
2 3 8


︸ ︷︷ ︸

M−(−4)I3

=

 63 58 90
14 41 32
70 66 121


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5.3.2 Matrices as maps

Let M be an n × n matrix and ~u be a non zero vector with n components. M
can be viewed as a linear transformation. Consider

S0 =
{
M0~u

}
S1 =

{
M0~u,M1~u

}
S2 =

{
M0~u,M1~u,M2~u

}
...

St =
{
M0~u,M1~u,M2~u, . . . ,M t~u

}
...

There is a minimum index k ≥ 1 such that Sk is linearly dependent and for
all j < k the set Sj is linearly independent. Indeed S0 is just the vector ~u that
is non-zero, therefore S0 is linearly independent. On the other hand any set
of i ≥ n vectors in the n-dimensional vector space are linearly dependent thus
k ≤ n.

Let Sk be first set in the sequence of sets of vectors S0, S1 . . . that is linearly
dependent. Adopting the notation

~ui = M i~u

which recursively means
~ui = M~ui−1

the set Sk is

Sk =
{
M0~u,M1~u,M2~u, . . . ,Mk−1~u,Mk~u

}
= { ~u0, ~u1, ~u2, . . . , ~uk−1, ~uk}

Since St is linearly dependent there are coefficients (not all zero):

α0 ~u0 + α1 ~u1 + α2 ~u2 + · · ·+ αk−1 ~uk−1 + αk ~uk = ~0

Observe that if αk = 0 then the set Sk−1 is linearly dependent contradicting
minimality of k; thus division by αk is allowed

α0

αk
~u0 +

α1

αk
~u1 +

α2

αk
~u2 + · · ·+ αk−1

αk
~uk−1 + ~uk = ~0

Let
ai =

αi
αk

then
a0 ~u0 + a1 ~u1 + a2 ~u2 + · · ·+ ak−1 ~uk−1 + ~uk = ~0
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By substituting back the notation for ~ui the above equation implies:

~0 = a0 ~u0 + a1 ~u1 + a2 ~u2 + · · ·+ ak−1 ~uk−1 + ~uk

= a0M
0~u+ a1M

1~u+ a2M
2~u+ · · ·+ ak−1M

k−1~u+Mk~u

=
(
a0M

0 + a1M
1 + a2M

2 + · · ·+ ak−1M
k−1 +Mk

)
~u

= p(M)~u

= (M − λkIn)(M − λk−1In) · · · (M − λ2In)(M − λ1In)~u

Matrix multiplication is associative operation so the order of multiplication
does not change the outcome of the computation. Performing the multiplica-
tion from right to left we have:

~z0 = ~u 6= ~0

~z1 = (M − λ1In)~u

~z2 = (M − λ2In)(M − λ1In)~u

...
~zi−1 = (M − λi−1In) · · · (M − λ2In)(M − λ1In)~u

~zi = (M − λiIn) (M − λi−1In) · · · (M − λ2In)(M − λ1In)~u︸ ︷︷ ︸
= ~zi−1

...
~zk−1 = (M − λk−1In) · · · (M − λ2In)(M − λ1In)~u

~0 = ~zk = (M − λkIn)(M − λk−1In) · · · (M − λ2In)(M − λ1In)~u

We have found an eigenvector with corresponding eigenvalue: if ~zi = ~0 and
~zi−1 6= ~0 then λi is an eigenvalue and ~zi−1 is a corresponding eigenvector.

Which shows that every n × n matrix has at least one eigenvector and corre-
sponding eigenvalue.

Examples

Applying the above procedure to

M =

 −67 116 48
−25 44 18
−35 59 25


~u =

 1
0
1


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The sets Si are

S0 =


 1

0
1


S1 =


 1

0
1

 −19
−7
−10


S2 =


 1

0
1

 −19
−7
−10

 −19
−13

2


S3 =


 1

0
1

 −19
−7
−10

 −19
−13

2

 −139
−61
−52


S0 is linear independent and S3 definitely linearly dependent. But there may
be another set with index smaller that 3 that is linearly dependent. Following
the above procedure check if S1 is linearly dependent that is solve:

s0

 1
0
1

+ s1

 −19
−7
−10

 =

 0
0
0


the set of solutions contains only the trivial solution so it is linearly indepen-
dent. Next, is S2 linearly independent, that is solve:

s0

 1
0
1

+ s1

 −19
−7
−10

+ s2

 −19
−13

2

 =

 0
0
0


the set of solutions contains only the trivial solution so it is linearly indepen-
dent. The set S3 is linearly dependent so the index we need is 3. Furthermore,
the equation

s0

 1
0
1

+ s1

 −19
−7
−10

+ s2

 −19
−13

2

+ s3

 −139
−61
−52

 =

 0
0
0


has non-trivial solution

(
s0 s1 s2 s3

)
=
(

6 −5 −2 1
)
. For the cor-

responding polynomial

p(x) = x3 − 2x2 − 5x+ 6

= (x− 3) · (x− 1) · (x+ 2)
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the vectors ~zi are

~z0 =

 1
0
1


~z1 =

 −17
−7
−8

 = (M − (−2)I)

 1
0
1


~z2 =

 −40
−20
−10

 = (M − (1)I)

 −17
−7
−8


~z3 =

 0
0
0

 = (M − (3)I)

 −40
−20
−10


The equation  0

0
0

 = (M − (3)I)

 −40
−20
−10


rearranged as

M

 −40
−20
−10

 = 3I

 −40
−20
−10


equivalently −67 116 48

−25 44 18
−35 59 25

 −40
−20
−10

 = 3

 1 0 0
0 1 0
0 0 1

 −40
−20
−10


simplified  −67 116 48

−25 44 18
−35 59 25

 −40
−20
−10

 = 3

 −40
−20
−10


identifies

 −40
−20
−10

 as eigenvector with eigenvalue 3 for matrix

 −67 116 48
−25 44 18
−35 59 25


The eigenvector that is computed depends on the initial vector ~u and the

order of which roots of the polynomial are listed. Here is another example for
the same matrix but with different initial vector:

M =

 −67 116 48
−25 44 18
−35 59 25


~u =

 3
1
2


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The sets Si are:

S0 =


 3

1
2


S1 =


 3

1
2

 11
5
4


S2 =


 3

1
2

 11
5
4

 35
17
10


S3 =


 3

1
2

 11
5
4

 35
17
10

 107
53
28


S0 is linear independent and S3 definitely linearly dependent. But there may
be another set with index smaller that 3 that is linearly dependent. Following
the above procedure check if S1 is linearly dependent that is solve:

s0

 3
1
2

+ s1

 11
5
4

 =

 0
0
0


the set of solutions contains only the trivial solution so it is linearly indepen-
dent. Next, is S2 linearly independent, that is solve:

s0

 3
1
2

+ s1

 11
5
4

+ s2

 35
17
10

 =

 0
0
0


The set S2 is linearly dependent. For example the above equation has a non-
trivial solution

(
s0 s1 s2

)
=
(

3 −4 1
)
. Thus the index k is 2. For the

corresponding polynomial

p(x) = x2 − 4x+ 3

= (x− 3) · (x− 1)

the vectors ~zi are

~z0 =

 3
1
2


~z1 =

 8
4
2

 = (M − (1)I)

 3
1
2


~z2 =

 0
0
0

 = (M − (3)I)

 8
4
2


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The equation  0
0
0

 = (M − (3)I)

 8
4
2


rearranged as

M

 8
4
2

 = (3)I

 8
4
2


equivalently −67 116 48

−25 44 18
−35 59 25

 8
4
2

 = 3

 1 0 0
0 1 0
0 0 1

 8
4
2


simplified  −67 116 48

−25 44 18
−35 59 25

 8
4
2

 = 3

 8
4
2


identifies

 8
4
2

 as eigenvector with eigenvalue 3 for matrix

 −67 116 48
−25 44 18
−35 59 25

.

5.4 Computing Eigenvalues and Eigenvectors

The above procedure illustrates that every square matrix has an eigenvector
and corresponding eigenvalue. However, the procedure depends on the initial
vector, on the order of which polynomial roots are listed in the expansion of the
polynomial; it is also tedious. It does indicate that there is a relation between
eigenvalues and eigenvectors, evaluating polynomials at matrices and linear
dependence.

Once the fact that every square matrix is has at least one eigenvector is
established, the next natural step is to find all eigenvectors and eigenvalues.

We can write A~u = λ~u as A~u = λI~u or equivalently

(A− λI)~u = ~0

Since we want a non-zero vector ~u the goal reduces to finding non-zero linear
combination of the columns of A− λI that evaluate to the zero vector. In other
words λ should make the columns of A − λI linearly dependent. Whether
A− λI has linearly dependent columns can be checked by looking at its deter-
minant. In other words computing the det(A − λI) and finding for which λ’s
the resulting determinant is zero. The determinant of A−λI is a polynomial in
λ, so we need the roots of that polynomial. Then for each root we find the non-
trivial solutions of (A− λiI)~u = 0 and obtain the eigenvectors. This argument
prove the following,
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Theorem 60. The number λ is an eigenvalue of A if and only if det(A− λI) = 0.

Then an algorithm to find the eigenvectors and eigenvalues for a matrix A
proceeds as follows:

1. compute the determinant of A− λI

2. compute the roots λ1, . . . , λn of the resulting polynomial, the n-roots are
the eigenvalues

3. for each eigenvalue i find the corresponding eigenvector by computing
(A− λiI)~x = 0

Definition 56. For a matrixA the polynomial det(A−λI) is called the characteristic
polynomial and the equation det(A−λI) = 0 is called the characteristic equation.

5.4.1 Example 2× 2→ 211,−111
Consider matrix A and the corresponding A− zI :

A =

(
4 −5
2 −3

)
→ A− zI =

(
−z + 4 −5

2 −z − 3

)
The characteristic polynomial is

p(z) = det(A− zI) = det

(
−z + 4 −5

2 −z − 3

)
= z2 − z − 2

= (2− z) · (−1− z)

For the solution 2 of the characteristic equation p(x) = 0 we have

(A− (2) I) ~x = ~0

((
4 −5
2 −3

)
− (2)

(
1 0
0 1

))
~x =

(
0
0

)
(

2 −5
2 −5

)
~x =

(
0
0

)
The set of solutions is

V2 =

{
s0

(
5
2

)
| ∀i, si ∈ R

}
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For the solution −1 of the characteristic equation p(x) = 0 we have

(A− (−1) I) ~x = ~0

((
4 −5
2 −3

)
− (−1)

(
1 0
0 1

))
~x =

(
0
0

)
(

5 −5
2 −2

)
~x =

(
0
0

)
The set of solutions is

V−1 =

{
s0

(
1
1

)
| ∀i, si ∈ R

}

5.4.2 Example 3× 3→ 211, 1
1
1,−311

Consider matrix A and the corresponding A− zI :

A =

 −9 14 4
3 0 −2

−18 22 9

 → A− zI =

 −z − 9 14 4
3 −z −2

−18 22 −z + 9


The characteristic polynomial is

p(z) = det(A− zI) = det

 −z − 9 14 4
3 −z −2

−18 22 −z + 9


= −z3 + 7z − 6

= (2− z) · (1− z) · (−3− z)

For the solution 2 of the characteristic equation p(x) = 0 we have

(A− (2) I) ~x = ~0

 −9 14 4
3 0 −2

−18 22 9

− (2)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 −11 14 4

3 −2 −2
−18 22 7

 ~x =

 0
0
0


The set of solutions is

V2 =

s0
 2

1
2

 | ∀i, si ∈ R


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For the solution 1 of the characteristic equation p(x) = 0 we have

(A− (1) I) ~x = ~0

 −9 14 4
3 0 −2

−18 22 9

− (1)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 −10 14 4

3 −1 −2
−18 22 8

 ~x =

 0
0
0


The set of solutions is

V1 =

s0
 3

1
4

 | ∀i, si ∈ R


For the solution −3 of the characteristic equation p(x) = 0 we have

(A− (−3) I) ~x = ~0

 −9 14 4
3 0 −2

−18 22 9

− (−3)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 −6 14 4

3 3 −2
−18 22 12

 ~x =

 0
0
0


The set of solutions is

V−3 =

s0
 2

0
3

 | ∀i, si ∈ R


5.4.3 Example 3× 3→ 221, 0

1
1

Consider matrix A and the corresponding A− zI :

A =

 1 2 1
2 0 −2
−1 2 3

 → A− zI =

 −z + 1 2 1
2 −z −2
−1 2 −z + 3


The characteristic polynomial is

p(z) = det(A− zI) = det

 −z + 1 2 1
2 −z −2
−1 2 −z + 3


= −z3 + 4z2 − 4z

= (0− z) · (2− z)2
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For the solution 0 of the characteristic equation p(x) = 0 we have

(A− (0) I) ~x = ~0

 1 2 1
2 0 −2
−1 2 3

− (0)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 1 2 1

2 0 −2
−1 2 3

 ~x =

 0
0
0


The set of solutions is

V0 =

s0
 1
−1

1

 | ∀i, si ∈ R


For the solution 2 of the characteristic equation p(x) = 0 we have

(A− (2) I) ~x = ~0

 1 2 1
2 0 −2
−1 2 3

− (2)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 −1 2 1

2 −2 −2
−1 2 1

 ~x =

 0
0
0


The set of solutions is

V2 =

s0
 1

0
1

 | ∀i, si ∈ R


5.4.4 Example 3× 3→ 431

Consider matrix A and the corresponding A− zI :

A =

 2 2 2
2 1 −1
−7 9 9

 → A− zI =

 −z + 2 2 2
2 −z + 1 −1
−7 9 −z + 9


The characteristic polynomial is

p(z) = det(A− zI) = det

 −z + 2 2 2
2 −z + 1 −1
−7 9 −z + 9


= −z3 + 12z2 − 48z + 64

= (4− z)3
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For the solution 4 of the characteristic equation p(x) = 0 we have

(A− (4) I) ~x = ~0

 2 2 2
2 1 −1
−7 9 9

− (4)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 −2 2 2

2 −3 −1
−7 9 5

 ~x =

 0
0
0


The set of solutions is

V4 =

s0
 2

1
1

 | ∀i, si ∈ R


5.4.5 Example 3× 3→ 432

Consider matrix A and the corresponding A− zI :

A =

 7 −1 −2
3 3 −2
3 −1 2

 → A− zI =

 −z + 7 −1 −2
3 −z + 3 −2
3 −1 −z + 2


The characteristic polynomial is

p(z) = det(A− zI) = det

 −z + 7 −1 −2
3 −z + 3 −2
3 −1 −z + 2


= −z3 + 12z2 − 48z + 64

= (4− z)3

For the solution 4 of the characteristic equation p(x) = 0 we have

(A− (4) I) ~x = ~0

 7 −1 −2
3 3 −2
3 −1 2

− (4)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 3 −1 −2

3 −1 −2
3 −1 −2

 ~x =

 0
0
0


The set of solutions is

V4 =

s0
 2

0
3

+ s1

 0
2
−1

 | ∀i, si ∈ R


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5.4.6 Example 3× 3→ 433

Consider matrix A and the corresponding A− zI :

A =

 4 0 0
0 4 0
0 0 4

 → A− zI =

 −z + 4 0 0
0 −z + 4 0
0 0 −z + 4


The characteristic polynomial is

p(z) = det(A− zI) = det

 −z + 4 0 0
0 −z + 4 0
0 0 −z + 4


= −z3 + 12z2 − 48z + 64

= (4− z)3

For the solution 4 of the characteristic equation p(x) = 0 we have

(A− (4) I) ~x = ~0

 4 0 0
0 4 0
0 0 4

− (4)

 1 0 0
0 1 0
0 0 1

 ~x =

 0
0
0


 0 0 0

0 0 0
0 0 0

 ~x =

 0
0
0


The set of solutions is

V4 =

s0
 1

0
0

+ s1

 0
1
0

+ s2

 0
0
1

 | ∀i, si ∈ R


5.4.7 Example 5× 5→ 022,−132
Consider matrix A

A =


−1 0 3 1 5

0 −1 6 2 10
3 −1 −4 −1 −6
−4 3 −3 −2 −7
−1 0 3 1 5


and the corresponding A− zI

A− zI =


−z − 1 0 3 1 5

0 −z − 1 6 2 10
3 −1 −z − 4 −1 −6
−4 3 −3 −z − 2 −7
−1 0 3 1 −z + 5


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The characteristic polynomial is

p(z) = det(A− zI) = det


−z − 1 0 3 1 5

0 −z − 1 6 2 10
3 −1 −z − 4 −1 −6
−4 3 −3 −z − 2 −7
−1 0 3 1 −z + 5


= −z5 − 3z4 − 3z3 − z2

= (0− z)2 · (−1− z)3

For the solution 0 of the characteristic equation p(x) = 0 we have

(A− (0) I) ~x = ~0



−1 0 3 1 5

0 −1 6 2 10
3 −1 −4 −1 −6
−4 3 −3 −2 −7
−1 0 3 1 5

− (0)


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ~x =


0
0
0
0
0



−1 0 3 1 5

0 −1 6 2 10
3 −1 −4 −1 −6
−4 3 −3 −2 −7
−1 0 3 1 5

 ~x =


0
0
0
0
0


The set of solutions is

V0 =

s0


1
2
0
1
0

+ s1


0
0
1
2
−1

 | ∀i, si ∈ R


For the solution −1 of the characteristic equation p(x) = 0 we have

(A− (−1) I) ~x = ~0



−1 0 3 1 5

0 −1 6 2 10
3 −1 −4 −1 −6
−4 3 −3 −2 −7
−1 0 3 1 5

− (−1)


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 ~x =


0
0
0
0
0




0 0 3 1 5
0 0 6 2 10
3 −1 −3 −1 −6
−4 3 −3 −1 −7
−1 0 3 1 6

 ~x =


0
0
0
0
0


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The set of solutions is

V−1 =

s0


1
2
0
−5

1

+ s1


0
0
1
−3

0

 | ∀i, si ∈ R


5.4.8 Remarks

In Section 5.3, we established that every matrix has at least one eigenvector. By
definition of eigenvalue λ we have that the columns of the matrix A − λI are
linearly dependent, thus in this section we establish that for every eigenvalue
there is at least one corresponding eigenvector.

The number of eigenvalues is equal to the number of roots of the character-
istic polynomial det(A − λI) which over the complex numbers is the order of
the matrix A.

Next we will work on the number of linearly independent eigenvectors. It
is worth noting that different eigenvalues have linearly independent eigenvec-
tors. The largest number of linearly independent eigenvector can be less than
the order of A. A matrix of order n with n linearly independent eigenvectors
can be diagonalized.

5.5 Properties of eigenvalues and eigenvectors

Definition 57. The eigenspace of a transformation φ associated with the eigen-
value λ is

Vλ = {~ζ | φ(~ζ ) = λ~ζ }
The eigenspace of a matrix is analogous.

Theorem 61. An eigenspace is a subspace.

Proof. The zero vector is in any eigenspace since A~0 = λ~0 for any eigenvalue λ.
So a subspace is non-empty and it remains to see that an eigenspace is closed
under linear combinations. Let ~v, ~u ∈ Vλ; for any constants α and β

A(α~v + β~u) = αA~v + βA~u = αλ~v + βλ~u = λ(α~v + β~u)

and therefore α~v + β~u ∈ Vλ. By Theorem 23 the result follows.

With the above result in mind

Definition 58 (multiplicity). Let A be a square matrix of order n with characteristic
polynomial:

det(A− λI) = (λ0 − λ)
m0(λ1 − λ)

m1 · · · (λt − λ)
mt

The algebraic multiplicity of λi ∈ {λ0 . . . λt} is mi. The geometric multiplicity of
the eigenvalue λi is the dimension of the corresponding eigenspace Vλi .
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Example: From the examples above

§5.4.1
eigenvalue algebraic multiplicity geometric multiplicity

2 1 1
−1 1 1

§5.4.2
2 1 1
1 1 1
−3 1 1

§5.4.3 2 2 1
0 1 1

§5.4.4
4 3 1

§5.4.5
4 3 2

§5.4.6
4 3 3

§5.4.7 0 2 2
−1 3 2

The geometric multiplicity of an eigenvalue is no larger than its algebraic
multiplicity (while true this claim is not proved here), and is at least one (since
every eigenvalue has at least one non-trivial eigenvector).

Theorem 62. A set of eigenvectors of corresponding to distinct eigenvalues is linearly
independent.

Proof. We will use induction on the number of eigenvalues. The base step is
that there are zero eigenvalues. Then the set of associated vectors is empty and
so is linearly independent.

For the inductive step assume that the statement is true for any set of k ≥ 0
distinct eigenvalues. Consider distinct eigenvalues λ1, . . . , λk+1 and let ~v1, . . . , ~vk+1

be associated eigenvectors. Suppose that

~0 = c1~v1 + · · ·+ ck~vk + ck+1~vk+1.

Derive two equations from that, the first by multiplying by λk+1 on both sides

~0 = c1λk+1~v1 + · · ·+ ck+1λk+1~vk+1

and the second by applying the map to both sides

~0 = c1t(~v1) + · · ·+ ck+1t(~vk+1) = c1λ1~v1 + · · ·+ ck+1λk+1~vk+1

(applying the matrix gives the same result). Subtract the second from the first.

~0 = c1(λk+1 − λ1)~v1 + · · ·+ ck(λk+1 − λk)~vk + ck+1(λk+1 − λk+1)~vk+1
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The ~vk+1 term vanishes. Then the induction hypothesis gives that

c1(λk+1 − λ1) = 0 . . . ck(λk+1 − λk) = 0

The eigenvalues are distinct so the coefficients c1, . . . , ck are all 0. With that
we are left with the equation ~0 = ck+1~vk+1 so ck+1 is also 0.

5.6 Diagonal form of a matrix

5.6.1 Similarity

Definition 59. Two matrices A and B are called similar if there is an invertible
matrix S such that A = S−1BS.

From
(
S−1

)−1
= S if A is similar to B then B is similar to A.

Example: from(
2 1
−1 0

)
=

(
1 −1
−1 2

)(
1 1
0 1

)(
2 1
1 1

)

we conclude
(

2 1
−1 0

)
is similar to

(
1 1
0 1

)
.

Definition 60. A matrix A is diagonalizable if it is similar to a diagonal matrix D.

5.6.2 Example

The matrix from §5.4.2 has three linearly independent eigenvectors vectors

~s1 =

 2
1
2

 ~s2 =

 2
0
3

 ~s3 =

 3
1
4


Construct a matrix

S =

 ↑ ↑ ↑
~s1 ~s2 ~s3
↓ ↓ ↓

 =

 2 2 3
1 0 1
2 3 4


Since the columns of S are linearly independent the matrix is invertible with
inverse

S−1 =

 3 −1 −2
2 −2 −1
−3 2 2


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Consider R = AS

 4 −6 3
2 0 1
4 −9 4


︸ ︷︷ ︸

R

=

A︷ ︸︸ ︷ −9 14 4
3 0 −2

−18 22 9


S︷ ︸︸ ︷ 2 2 3

1 0 1
2 3 4



Let

~r1 =

 4
2
4

 ~r2 =

 −6
0
−9

 ~r3 =

 3
1
4


We have

~r1︷ ︸︸ ︷ 4
2
4

 =

A︷ ︸︸ ︷ −9 14 4
3 0 −2

−18 22 9


~s1︷ ︸︸ ︷ 2
1
2

 =

d11︷︸︸︷
2

~s1︷ ︸︸ ︷ 2
1
2


~r2︷ ︸︸ ︷ −6
0
−9

 =

A︷ ︸︸ ︷ −9 14 4
3 0 −2

−18 22 9


~s2︷ ︸︸ ︷ 2
0
3

 =

d22︷︸︸︷
−3

~s2︷ ︸︸ ︷ 2
0
3


~r3︷ ︸︸ ︷ 3
1
4

 =

A︷ ︸︸ ︷ −9 14 4
3 0 −2

−18 22 9


~s3︷ ︸︸ ︷ 3
1
4

 =

d33︷︸︸︷
1

~s3︷ ︸︸ ︷ 3
1
4


where dii is the eigenvalue corresponding to eigenvector ~si. For every vector
~si we have

~s1 =

 2
1
2

 =

 2 2 3
1 0 1
2 3 4

 1
0
0


~s2 =

 2
0
3

 =

 2 2 3
1 0 1
2 3 4

 0
1
0


~s3 =

 3
1
4

 =

 2 2 3
1 0 1
2 3 4

 0
0
1


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Adding the eigenvalues and using the fact that multiplication with a constant
commutes with vector multiplication we get

d11~s1 = 2

 2
1
2

 = 2

 2 2 3
1 0 1
2 3 4

 1
0
0


=

 2 2 3
1 0 1
2 3 4

2

 1
0
0

 =

 2 2 3
1 0 1
2 3 4

 2
0
0


d22~s2 = −3

 2
0
3

 = −3

 2 2 3
1 0 1
2 3 4

 0
1
0


=

 2 2 3
1 0 1
2 3 4

−3

 0
1
0

 =

 2 2 3
1 0 1
2 3 4

 0
−3

0


d33~s3 = 1

 3
1
4

 = 1

 2 2 3
1 0 1
2 3 4

 0
0
1


=

 2 2 3
1 0 1
2 3 4

1

 0
0
1

 =

 2 2 3
1 0 1
2 3 4

 0
0
1


So for every i we have ~ri = S(dii~ei) = S~di, where

~d1 = d11~e1 = 2

 1
0
0

 =

 2
0
0


~d2 = d22~e2 = −3

 0
1
0

 =

 0
−3

0


~d3 = d33~e3 = 1

 0
0
1

 =

 0
0
1


Combine the vectors ~di into a (diagonal) matrix

D =

 ↑ ↑ ↑
~d1 ~d2 ~d3
↓ ↓ ↓

 =

 2 0 0
0 −3 0
0 0 1


to obtain  4 −6 3

2 0 1
4 −9 4

 =

 2 2 3
1 0 1
2 3 4

 2 0 0
0 −3 0
0 0 1


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Thus R = AS and R = SD

 4 −6 3
2 0 1
4 −9 4


︸ ︷︷ ︸

R

=

A︷ ︸︸ ︷ −9 14 4
3 0 −2

−18 22 9


S︷ ︸︸ ︷ 2 2 3

1 0 1
2 3 4


︷ ︸︸ ︷ 4 −6 3

2 0 1
4 −9 4

 =

 2 2 3
1 0 1
2 3 4


︸ ︷︷ ︸

S

 2 0 0
0 −3 0
0 0 1


︸ ︷︷ ︸

D

from which one concludes AS = SD. Multiplyting on the right with S−1 we
get

A︷ ︸︸ ︷ −9 14 4
3 0 −2

−18 22 9

 =

S︷ ︸︸ ︷ 2 2 3
1 0 1
2 3 4


D︷ ︸︸ ︷ 2 0 0

0 −3 0
0 0 1


S−1︷ ︸︸ ︷ 3 −1 −2

2 −2 −1
−3 2 2


which shows the matrix A is diagonalizable.

5.6.3 Example

From A = SDS−1 where
A︷ ︸︸ ︷ 8 −6 −12

3 −1 −6
3 −3 −4

 =

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1


D︷ ︸︸ ︷ 2 0 0

0 2 0
0 0 −1


S−1︷ ︸︸ ︷ 1 0 −2

0 −1 1
−1 1 2


the matrix A is diagonalizable. Multiplying on both sides from the right with
S we get AS = SD; suppose the result of the multiplication is R so

R = AS and R = SD

that is

 6 4 −2
2 0 −1
2 2 −1


︸ ︷︷ ︸

R

=

A︷ ︸︸ ︷ 8 −6 −12
3 −1 −6
3 −3 −4


S︷ ︸︸ ︷ 3 2 2

1 0 1
1 1 1


︷ ︸︸ ︷ 6 4 −2

2 0 −1
2 2 −1

 =

 3 2 2
1 0 1
1 1 1


︸ ︷︷ ︸

S

 2 0 0
0 2 0
0 0 −1


︸ ︷︷ ︸

D
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Let ~r1 =

 6
2
2

 ~r2 =

 4
0
2

 ~r3 =

 −2
−1
−1

 that is

~r1 =

 6
2
2

 ~r2 =

 4
0
2

 ~r3 =

 −2
−1
−1



and S =

 ↑ ↑ ↑
~s1 ~s2 ~s3
↓ ↓ ↓

 =

 3 2 2
1 0 1
1 1 1

 that is

~s1 =

 3
1
1

 ~s2 =

 2
0
1

 ~s3 =

 2
1
1


From R = AS using properties of matrix multiplication we get ~ri = A~si

~r1︷ ︸︸ ︷ 6
2
2

 =

A︷ ︸︸ ︷ 8 −6 −12
3 −1 −6
3 −3 −4


~s1︷ ︸︸ ︷ 3
1
1


~r2︷ ︸︸ ︷ 4
0
2

 =

A︷ ︸︸ ︷ 8 −6 −12
3 −1 −6
3 −3 −4


~s2︷ ︸︸ ︷ 2
0
1


~r3︷ ︸︸ ︷ −2
−1
−1

 =

A︷ ︸︸ ︷ 8 −6 −12
3 −1 −6
3 −3 −4


~s3︷ ︸︸ ︷ 2
1
1



Likewise for D =

 ↑ ↑ ↑
~d1 ~d2 ~d3
↓ ↓ ↓

 =

 2 0 0
0 2 0
0 0 −1

where

~d1 =

 2
0
0

 ~d2 =

 0
2
0

 ~d3 =

 0
0
−1


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we have

~d1 =

 2
0
0

 = 2

 1
0
0

 = d11~e1

~d2 =

 0
2
0

 = 2

 0
1
0

 = d22~e2

~d3 =

 0
0
−1

 = −1

 0
0
1

 = d33~e3

 2 0 0
0 2 0
0 0 −1

 =

 2︸︷︷︸
d11

 1
0
0


︸ ︷︷ ︸

~e1

, 2︸︷︷︸
d22

 0
1
0


︸ ︷︷ ︸

~e2

, −1︸︷︷︸
d33

 0
0
1


︸ ︷︷ ︸

~e3


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From R = SD using properties of matrix multiplication we obtain ~ri = dii~si

~r1︷ ︸︸ ︷ 6
2
2

 =

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1


~d1︷ ︸︸ ︷ 2
0
0

 =

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1

 (2)︸︷︷︸
d11

 1
0
0


︸ ︷︷ ︸

~e1

= (2)︸︷︷︸
d11

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1

  1
0
0


︸ ︷︷ ︸

~e1

= (2)︸︷︷︸
d11

~s1︷ ︸︸ ︷ 3
1
1


~r2︷ ︸︸ ︷ 4
0
2

 =

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1


~d2︷ ︸︸ ︷ 0
2
0

 =

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1

 (2)︸︷︷︸
d22

 0
1
0


︸ ︷︷ ︸

~e2

= (2)︸︷︷︸
d22

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1

  0
1
0


︸ ︷︷ ︸

~e2

= (2)︸︷︷︸
d22

~s2︷ ︸︸ ︷ 2
0
1


~r3︷ ︸︸ ︷ −2
−1
−1

 =

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1


~d3︷ ︸︸ ︷ 0
0
−1

 =

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1

 (−1)︸︷︷︸
d33

 0
0
1


︸ ︷︷ ︸

~e3

= (−1)︸︷︷︸
d33

S︷ ︸︸ ︷ 3 2 2
1 0 1
1 1 1

  0
0
1


︸ ︷︷ ︸

~e3

= (−1)︸︷︷︸
d33

~s3︷ ︸︸ ︷ 2
1
1



As a result we have
~ri = A~si = dii~si

and by definition we get ~si is eigenvector with eigenvalue dii for matrix A.
Since S is invertible its columns are linearly independent therefore ~s1, ~s2, ~s3 are
linearly independent and therefore we have three linearly independent eigen-
vectors for matrix A.
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5.6.4 Diagonalization

In the above two examples do not depend on the actual values of the constants.
The idea can be generalized to the following

Theorem 63. An n× n matrix is diagonalizable if and only if it has n linearly inde-
pendent eigenvectors.

Proof. Assume S−1AS = D = (d1~e1, d2~e2, . . . , dn~en) and let

S =

 ↑ ↑ ↑
~s1 ~s2 ~sn
↓ ↓ ↓


alternatively S~ei = ~si. We have that

(A~s1, A~s2, . . . , A~sn) = A(~s1, ~s2, . . . , ~sn)

= IAS = SS−1AS = SD = S(d1~e1, d2~e2, . . . , dn~en)

= (Sd1~e1, Sd2~e2, . . . , Sdn~en)

= (d1S~e1, d2S~e2, . . . , dnS~en)

= (d1~s1, d2~s2, . . . , dn~sn)

Column-wise we have A~si = di~si; the columns of S are all non-zero since S is
invertible and therefore every column of S is an eigenvector for A.

Conversely, assume that A has n linearly independent eigenvectors say
~s1, . . . , ~sn with corresponding eigenvalues λ1, λ2 . . . , λn construct a matrix S
whose columns are ~s1, . . . , ~sn so

S =

 ↑ ↑ ↑
~s1 ~s2 . . . ~sn
↓ ↓ ↓


alternatively

S~ei = ~si.

We have that

S−1AS = S−1A(~s1, ~s2, . . . , ~sn)

= S−1(A~s1, A~s2, . . . , A~sn)

= S−1(λ1~s1, λ2~s2, . . . , λn~sn)

= S−1(λ1S~e1, λ2S~e2, . . . , λnS~en)

= S−1S(λ1~e1, λ2~e2, . . . , λn~en)

= (λ1~e1, λ2~e2, . . . , λn~en)

=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = D

where D is a diagonal matrix with diagonal entries the eigenvalues of A.
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Example: we can have different matrices S by picking different eigenvectors
as long as they are linearly independent. Likewise if we reorder the eigenvec-
tors we will get a different (but similar) diagonal matrix. 8 −6 −12

3 −1 −6
3 −3 −4

 =

 3 2 2
1 0 1
1 1 1

 2 0 0
0 2 0
0 0 −1

 1 0 −2
0 −1 1
−1 1 2


=

 − 2
3

9
2 4

0 3
2 2

− 1
3

3
2 2

 2 0 0
0 2 0
0 0 −1

 0 3 −3
2
3 0 − 4

3
− 1

2
1
2 1


Determinant. A matrix A is invertible if none of its eigenvalues is zero:

det(A) = det(S−1ΛS) = det(S−1) det(Λ) det(S) = det(Λ)

Diagonalization. A matrix A is diagonalizable if it has sufficiently many lin-
early independent eigenvectors. For example let’s try to diagonalize A =(

1 0
1 1

)
; the matrix A has only eigenvalue 1 and a single linearly indepen-

dent eigenvector
(

0
1

)
. If A is diagonalizable then there is an invertible ma-

trix S =

(
a b
c d

)
with inverse S−1 =

1

ad− cb

(
d −b
−c a

)
. Such that(

x 0
0 y

)
=

1

ad− cb

(
d −b
−c a

)(
1 0
1 1

)(
a b
c d

)
equivalently

(ad− cb)
(
x 0
0 y

)
=

(
d −b
−c a

)(
1 0
1 1

)(
a b
c d

)

=

(
d− b −b
−c+ a a

)(
a b
c d

)

=

(
a(d− b)− bc bd− b2 − bd
−ac+ a2 + ac (a− c)b+ ad

)

=

(
a(d− b)− bc −b2

a2 (a− c) + ad

)
From here

(ad− cb)x = a(d− b)− bc
0 = −b2

0 = a2

(ad− cb)y = (a− c)b+ ad
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concluding that a = b = 0. In that case for the matrix S we have S =

(
0 0
c d

)
which is not an invertible matrix, a contradiction with S being invertible.

Definition 61 (defective matrix). A matrix A that is not diagonalizable is call de-
fective.

194


	Linear Systems
	Linearity and linear equations
	Solutions to a linear equation

	System of linear equations
	Equivalent systems
	Matrices and vectors
	Representations of system of linear equations
	Echelon form and back substitution
	Row operations as matrix multiplication
	Matrix operations

	Gauss' method
	Gauss' method example:
	Inconsistent system of linear equation
	Another consistent example
	System of linear equations with shared matrix
	System of linear equations with unique solution
	Observations
	Reduced Echelon form and inverse

	Homogeneous and particular solutions
	Zero equals zero and number of solutions


	Vector spaces
	Definitions and examples
	A special example
	General results for vector spaces
	Linear combinations
	Linear dependence and independence
	Main theorem
	Subspaces
	Span
	Basis and Dimension
	Coordinates
	Change of basis

	Rank of a matrix

	Linear Transformations
	Basic definitions
	Note on terminology

	Examples
	Reflection
	Example: exponential coordinate
	Example: polynomial coordinate
	Polynomials to upper triangular matrices:
	Example: M23 to M32 matrices

	Isomorphic Vector Spaces
	Properties of linear maps
	Linear extensions
	R2 R4 example
	M32 P6 example
	 P3M22 example

	Rank nullity
	Matrix representation of linear maps
	d:P3P2
	M22 P2
	P2D2
	M23M23

	Change of basis
	P3P3
	P2P2
	Invertible matrices
	Matrix multiplication


	Determinant
	Definitions and properties
	Towards existence
	Determinant of a permutation

	Eigenvalues and Eigenvectors
	Motivation
	Eigenvectors
	Examples
	Remarks

	Existence
	Polynomials and matrices
	Matrices as maps

	Computing Eigenvalues and Eigenvectors
	Example 22 211, -111
	Example 33 211,111,-311
	Example 33 221,011
	Example 33 431
	Example 33 432
	Example 33 433
	Example 55 022,-132
	Remarks

	Properties of eigenvalues and eigenvectors
	Diagonal form of a matrix
	Similarity
	Example
	Example
	Diagonalization



