Remarks:
Remarks:
\(\hat{i}=\vec{i}=\vec{e}_1 = \left(\begin{array}{c}1\\0\end{array}\right)\) and \(\hat{j}=\vec{j}=\vec{e}_2 = \left(\begin{array}{c}0\\1\end{array}\right)\)
\(\hat{i}=\vec{i}=\vec{e}_1 = \left(\begin{array}{c}1\\0\\0\end{array}\right)\), \(\hat{j}=\vec{j}=\vec{e}_2 = \left(\begin{array}{c}0\\1\\0\end{array}\right)\) and \(\hat{k}=\vec{k}=\vec{e}_3 = \left(\begin{array}{c}0\\0\\1\end{array}\right)\)
The vector projection of \(\vec{u}\) onto (non-zero) vector \(\vec{w}\) is a new vector \({\mathrm{proj}}_{\vec{w}}\left(\vec{u}\right)\) that is parallel to \(\vec{w}\) and \({\mathrm{proj}}_{\vec{w}}\left(\vec{u}\right) -\vec{u}\) is orthogonal to \(\vec{w}\).
\begin{eqnarray*}{\mathrm{proj}}_{\vec{w}}\left(\vec{u}\right) = \left(\frac{\vec{u}\cdot\vec{w}}{\vec{w}\cdot\vec{w}}\right)\vec{w} &=& \left(\frac{\vec{u}\cdot\vec{w}}{{\|\vec{w}\|}^2}\right)\vec{w} = \left(\frac{\vec{u}\cdot\vec{w}}{{\|\vec{w}\|}}\right)\frac{\vec{w}}{\|\vec{w}\|} \end{eqnarray*}The scalar projection of \(\vec{u}\) onto (non-zero) vector \(\vec{w}\) is the length of the vector projection of \(\vec{u}\) onto \(\vec{w}\)
\begin{eqnarray*}{\mathrm{comp}}_{\vec{w}}\left(\vec{u}\right) &=& \left\|{\mathrm{proj}}_{\vec{w}}\left(\vec{u}\right) \right\| = \frac{\vec{u}\cdot\vec{w}}{{\|\vec{w}\|}} \end{eqnarray*}Definition: Orthogonal decomposition
The orthogonal decomposition of \(\vec{u}\) in terms of (non-zero) vector \(\vec{w}\) is
\begin{eqnarray*}\vec{u} &=& \underbrace{{\mathrm{proj}}_{\vec{w}}\left(\vec{u}\right) }_{\|\vec{w}}+ \underbrace{\left(\vec{u} - {\mathrm{proj}}_{\vec{w}}\left(\vec{u}\right) \right)}_{\perp\vec{w}} \end{eqnarray*}