Calculus of vector valued functions

  • Limits and continuity
  • Derivatives
  • Integrals
  • TNB frame
  • Motion in space

Vector valued functions

Definition: Vector valued function

A vector valued function if a function of the form

$$\begin{array}{rcl} \vec{r}(t) &=& \left(\begin{array}{r} x(t)\\y(t) \end{array}\right) =x(t)\vec{i} + y(t)\vec{j} \\\\ \vec{r}(t) &=& \left(\begin{array}{r} x(t)\\y(t)\\z(t) \end{array}\right) =x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k} \end{array}$$

where $x(t)$, $y(t)$ and $z(t)$ are called the component functions. Each component functions is a real valued function.

Definition: Limit

$$ \lim_{t \to a}\vec{r}(t) = \vec{L} \qquad \Leftrightarrow \qquad \lim_{t \to a}\left\|\vec{r}(t) -\vec{L} \right\| = 0 $$

Equivalently

$$\begin{array}{rcl}\displaystyle \lim_{t\to a}\vec{r}(t) &=& \left(\displaystyle\lim_{t\to a} x(t)\right)\vec{i} +\left(\displaystyle \lim_{t\to a} y(t)\right)\vec{j} +\left(\displaystyle\lim_{t\to a} z(t)\right)\vec{k} \end{array}$$

Definition: Limit

$$ \lim_{t \to a}\vec{r}(t) = \vec{L} \qquad \Leftrightarrow \qquad \lim_{t \to a}\left\|\vec{r}(t) -\vec{L} \right\| = 0 $$

Equivalently

$$\begin{array}{rcl}\displaystyle \lim_{t\to a}\vec{r}(t) &=& \left(\displaystyle\lim_{t\to a} x(t)\right)\vec{i} +\left(\displaystyle \lim_{t\to a} y(t)\right)\vec{j} +\left(\displaystyle\lim_{t\to a} z(t)\right)\vec{k} \end{array}$$

Derivatives

Definition: Derivative

The derivative of a vector valued function \(\)is

\[ \frac{\mathrm{d}\,{\vec{r}(t)}}{\mathrm{d}\,{t}} =\left[\vec{r}(t)\right]' =\vec{r}'(t) = \lim_{\Delta t \to 0} \frac{\vec{r}\left(t+\Delta t\right) - \vec{r}\left(t\right)}{\Delta t} \]

If \(\vec{r}'(t)\) exists then \(\vec{r}(t)\) is differentiable at \(t\). If \(\vec{r}\) is differentiable for all \(t\in(a,b)\) then \(\vec{r}\) is differentiable on \((a,b)\). If in addition

\begin{eqnarray*} \left[\vec{r}(a)\right]' =\vec{r}'(a) &= & \lim_{\Delta t \to 0^+} \frac{\vec{r}\left(a+\Delta t\right) - \vec{r}\left(a\right)}{\Delta t} \\\\ \left[\vec{r}(b)\right]' =\vec{r}'(b)& =& \lim_{\Delta t \to 0^-} \frac{\vec{r}\left(b+\Delta t\right) - \vec{r}\left(b\right)}{\Delta t} \end{eqnarray*}

then \(\vec{r}\) is differentiable on \([a,b]\).

Theorem: Differentiable vector valued function

Let \(x(t)\), \(y(t)\) and \(z(t)\) be differentiable. If

$$ \vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k} $$

then

$$ \left[\vec{r}(t)\right]' = \left[x(t)\right]'\vec{i} +\left[y(t)\right]'\vec{j} +\left[z(t)\right]'\vec{k} $$

Theorem: properties

$$ \begin{array}{rcl} \left[ c\vec{r}(t) \right]' &=& c\left[\vec{r}(t)\right]' \\[1.3ex] \left[ \vec{r}(t) + \vec{u}(t) \right]' &=& \left[\vec{r}(t)\right]' + \left[\vec{u}(t)\right]' \\[1.3ex] \left[ f(t)\vec{r}(t) \right]' &=& f(t)\left[\vec{r}(t)\right]' + \left[f(t)\right]'\vec{r}(t) \end{array}$$

Theorem: properties

$$ \begin{array}{rcl} \left[ \vec{r}(t)\cdot \vec{u}(t) \right]' &=& \left[\vec{r}(t)\right]'\cdot\vec{u}(t) + \vec{r}(t)\cdot\left[\vec{u}(t)\right]' \\[1.3ex] \left[ \vec{r}(t)\times \vec{u}(t) \right]' &=& \left[\vec{r}(t)\right]'\times\vec{u}(t) + \vec{r}(t)\times\left[\vec{u}(t)\right]' \\[1.3ex] \left[ \vec{r}\left(f(t)\right) \right]' &=& \left[\vec{r}\left(f(t)\right)\right]' \left[f(t)\right]' \\[1.3ex] \vec{r}(t)\cdot\vec{r}(t) = c &\Rightarrow& \vec{r}(t)\cdot\left[ \vec{r}(t) \right]' =0 \end{array}$$

Definition: Smooth curves

Let \(C\) be a curve defined by a differentiable on \((a,b)\) vector valued function \(\vec{r}(t)\). If \(\forall t\in(a,b)\) we have \(\vec{v}'(t) \ne \vec{0}\) then \(C\) is called smooth on \((a,b)\).

Definition: Derivative

Let \(C\) be a curve defined by a vector valued function \(\vec{r}(t)\). Suppose \(\displaystyle \left[\vec{r}(t_0)\right]'\) exists, then it is called a tangent vector to \(C\) at \(\vec{r}(t_0)\). If in addition \(\displaystyle \left|\left[\vec{r}(t_0)\right]'\right|\ne0\), then the principle unit tangent vector is

$$ \vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} $$

Integrals

Definition: Indefinite integral

Let \(\)\(\vec{r}(t)\) be a vector valued function

$$\begin{array}{rcl} \vec{r}(t) & =& \left[x(t)\right]\vec{i} + \left[y(t)\right]\vec{j} + \left[z(t)\right]\vec{k} \end{array}$$

The indefinite integral of \(\vec{r}(t)\) is

$$\begin{array}{rcl} \int\vec{r}(t)\,\mathrm{d}\,{t} & =& \int\left[\left[x(t)\right]\vec{i} + \left[y(t)\right]\vec{j} + \left[z(t)\right]\vec{k}\right]\,\mathrm{d}\,{t} \\\\ &=& \left[\int x(t)\,\mathrm{d}\,{t}\right]\vec{i} + \left[\int y(t)\,\mathrm{d}\,{t}\right]\vec{j} + \left[\int z(t)\,\mathrm{d}\,{t}\right]\vec{k} \end{array}$$

Definition: Definite integral

Let \(\)\(\vec{r}(t)\) be a vector valued function

$$\begin{array}{rcl} \vec{r}(t) & =& \left[x(t)\right]\vec{i} + \left[y(t)\right]\vec{j} + \left[z(t)\right]\vec{k} \end{array}$$

The definite integral of \(\vec{r}(t)\) is

$$\begin{array}{rcl} \int_{a}^{b}\vec{r}(t) \,\mathrm{d}\,{t} & =& \int_{a}^{b}\left[\left[x(t)\right]\vec{i} + \left[y(t)\right]\vec{j} + \left[z(t)\right]\vec{k}\right]\,\mathrm{d}\,{t} \\\\ &=& \left[\int_{a}^{b} x(t)\,\mathrm{d}\,{t}\right]\vec{i} + \left[\int_{a}^{b} y(t)\,\mathrm{d}\,{t}\right]\vec{j} + \left[\int_{a}^{b} z(t)\,\mathrm{d}\,{t}\right]\vec{k} \end{array}$$

TNB frame

Definition: Arc length

For a smooth in \([a,b]\) vector valued function

$$ \vec{r}(t) = x(t) \vec{i} + y(t) \vec{j} + z(t) \vec{k} $$

the arc length in the interval \([a,b]\) is

$$ \begin{array}{rcl} L & =&\int_{a}^{b} \sqrt{ {\left(x'(t)\right)}^2 +{\left(y'(t)\right)}^2 +{\left(z'(t)\right)}^2 }\mathrm{d}{t} =\int_{a}^{b} \left\|\left[\vec{r}(t)\right]'\right\|\mathrm{d}{t} \end{array} $$

Definition: arc length function

For a smooth in \([a,b]\) vector valued function

$$ \vec{r}(t) = x(t) \vec{i} + y(t) \vec{j} + z(t) \vec{k} $$

the arc length function in the interval \([a,b]\) is

$$ \begin{array}{rcl} s(t) & =&\int_{a}^{t} \sqrt{ {\left(x'(u)\right)}^2 +{\left(y'(u)\right)}^2 +{\left(z'(u)\right)}^2 }\,\mathrm{d}{u} =\int_{a}^{t} \left\|\left[\vec{r}(u)\right]'\right\|\,\mathrm{d}{u} \end{array} $$

Arc length parametrization
$$ \begin{array}{rcl} s'(t) & = & \left\|\left[\vec{r}(u)\right]'\right\| > 0 \qquad \textrm{increasing} \end{array} $$

if \(\displaystyle \left\|\left[\vec{r}(u)\right]'\right\| = 1\) then the curve is said to be parametrized with respect to arc length and


$$ \begin{array}{rcl} s(t) & = & \int_{a}^{t} \left\|\left[\vec{r}(u)\right]'\right\| \mathrm{d}{u} = \int_{a}^{t} \mathrm{d}{u} = t-a \end{array} $$

Parametrizing by arc length

$\vec{r}(t) = x(t) \vec{i} + y(t) \vec{j} + z(t) \vec{k} $

$$ \begin{array}{rcl} L(t) & =& \int_{a}^{t} \left\|\left[\vec{r}(u)\right]'\right\|\mathrm{d}{t} \end{array} $$

from

$$ \begin{array}{rcl} s = L(t) & \Rightarrow & t = L^{-1}(s) \end{array} $$

Arc length parametrization is

$$\vec{g}(t) = \vec{r}\left(L^{-1}(s)\right)$$

Definition: curvature

For a smooth in \(\) \([a,b]\) vector valued function parametrized by arc length

$$ \begin{array}{rcl} \vec{r}(s) &=& x(s) \vec{i} + y(s) \vec{j} + z(s) \vec{k} \end{array} $$

the curvature \(\displaystyle \kappa = \kappa(s)\) is

$$ \begin{array}{rcl} \kappa(s) & =& \left\|\frac{\mathrm{d}\,\vec{T}(s)}{\mathrm{d}\,{s}}\right\| =\left\|{\left[\vec{T}(s)\right]'}\right\| \end{array} $$

Theorem: properties \(\)

$$ \begin{array}{rcl} \kappa & =& \frac{\left\|\left[\vec{T}(t)\right]'\right\|} {\left\|\left[\vec{r}(t)\right]'\right\|} \\\\ \kappa & =& \frac{\left\|\left[\vec{r}(t)\right]'\times \left[\vec{r}(t)\right]''\right\|} {{\left\|\left[\vec{r}(t)\right]'\right\|}^3} \qquad\textrm{in space} \\\\ \kappa & =& \frac{\left\|y''\right\|} {{\left[1+\left(y'\right)^2\right]}^{3/2}} \qquad\textrm{for}\quad y=f(x) \end{array} $$

Definition: Unit normal and binormal\(\)

$$ \begin{array}{rcl} \vec{N}(t)& =& \frac{\left[\vec{T}(t)\right]'} {\left\|\left[\vec{T}(t)\right]'\right\|} \\\\ \vec{B}(t)& =& \vec{T}(t)\times \vec{N}(t) \end{array} $$

Motion in space

Terminology

For a position vector valued function

$$ \begin{array}{rcl} \vec{r}(t) &=& x(t) \vec{i} + y(t) \vec{j} + z(t) \vec{k} \end{array} $$ we have $$ \begin{array}{rcl} \vec{v}(t) &=& \left[\vec{r}(t)\right]' \qquad \textrm{velocity}\quad \int_{a}^{b}\vec{v}(t)\mathrm{d}t \quad\textrm{ displacement} \\[2ex] {s}(t) &=& \left|\vec{v}(t)\right| = \left|\left[\vec{r}(t)\right]'\right| \qquad \textrm{speed} \\\\ \vec{a}(t) &=& \left[\vec{v}(t)\right]' = \left[\vec{r}(t)\right]'' \qquad \textrm{accelaration} \end{array} $$

Acceleration components
$$ \begin{array}{rcl} \vec{{T}}(t) &=& \frac{\vec{r}\,'(t)}{\left\|{\vec{r}\,'(t)}\right\|} = \frac{\vec{v}(t)}{v} \quad\Rightarrow\quad \vec{v} = v\vec{{T}}(t) \\\\ \vec{a} &=& v'\vec{{T}} + v\vec{{T}}\,' \\&=& v'\vec{{T}} + \kappa v^2\vec{{N}} \\&=& a_T\vec{{T}} + a_N\vec{{N}} \end{array} $$

tangential component
$$ \begin{array}{rcl} \displaystyle \vec{v}\cdot\vec{a} &=& v\vec{T}\cdot\left( v'\vec{{T}} + \kappa v^2\vec{{N}} \right) \\\\ a_T &=& \displaystyle \frac{{\vec{v}}\cdot{\vec{a}}}{v} = \frac{{\vec{r}\,'}\cdot{\vec{r}\,''}}{\left\|{\vec{r}\,'}\right\|} \end{array} $$

Normal/radial/centripetal component
$$ \begin{array}{rcl} a_N &=& \kappa v^2 = \displaystyle \frac{\left\|\left[\vec{r}(t)\right]'\times \left[\vec{r}(t)\right]''\right\|} {{\left\|\left[\vec{r}(t)\right]'\right\|}^3} {{\left\|\vec{r}\,'(t)\right\|}}^{2} \\&=&\displaystyle \frac{\left\|\vec{v}\times \vec{a}\right\|} {{\left\|\vec{v}\right\|}} \\\\ &=&\sqrt{{\left\|{\vec{a}}\right\|}^2-a_T} \end{array} $$